學術產出-學位論文

題名 類神經網路在汽車保險費率擬訂的應用
Artificial Neural Network Applied to Automobile Insurance Ratemaking
作者 陳志昌
Chen, Chi-Chang Season
貢獻者 黃泓智<br>余清祥
Huang, Hung-Chin Jerry<br>Yue, Ching-Syang Jack
陳志昌
Chen, Chi-Chang Season
關鍵詞 汽車車體損失保險
損失率
最小誤差估計法
類神經網路
Automobile Material Damage Insurance
Loss Ratio
Minimum Bias Estimate
Artificial Neural Network
日期 2003
上傳時間 2009-09-18
摘要 自1999年以來,台灣汽車車體損失險的投保率下降且損失率逐年上升,與強制第三責任險損失率逐年下降形成強烈對比,理論上若按個人風險程度計收保費,吸引價格認同的被保險人加入並對高風險者加費,則可提高投保率並且確保損失維持在合理範圍內。基於上述背景,本文採用國內某產險公司1999至2002年汽車車體損失保險資料為依據,探討過去保費收入與未來賠款支出的關係,在滿足不偏性的要求下,尋求降低預測誤差變異數的方法。

研究結果顯示:車體損失險存在保險補貼。以最小誤差估計法計算的新費率,可以改善收支不平衡的現象,但對於應該減費的低風險保戶,以及應該加費的高高風險保戶,以類神經網路推計的加減費系統具有較大加減幅度,因此更能有效的區分高低風險群組,降低不同危險群組間的補貼現象,並在跨年度的資料中具有較小的誤差變異。
In the past five years, the insured rate of Automobile Material Damage Insurance (AMDI) has been declined but the loss ratio is climbing, in contrast to the decreasing trend in the loss ratio of the compulsory automobile liability insurance. By charging corresponding premium based on individual risks, we could attract low risk entrant and reflect the highly risk costs. The loss ratio can thus be modified to a reasonable level. To further illustrate the concept, we aim to take the AMDI to study the most efficient estimator of the future claim. Because the relationship of loss experience (input) and future claim estimation (output) is similar to the human brain performs. We can analyze the relation by minimum bias procedure and artificial neural network, reducing error with overall rate level could go through with minimum error of classes or individual, demonstrated using policy year 1999 to 2002 data.

According to the thesis, cross subsidization exists in Automobile Material Damage Insurance. The new rate produced by minimum bias estimate can alleviate the unbalance between the premium and loss. However the neural network classification rating can allocate those premiums more fairly, where ‘fairly’ means that higher premiums are paid by those insured with greater risk of loss and vice-versa. Also, it is the more efficient than the minimum bias estimator in the panel data.
參考文獻 中文部份
【1】梁正德,「再談我國汽車保險從人因素係數之釐訂」,保險專刊 第32輯,82年。
【2】魏長賢,「肇事記錄對汽車保險費率影響之探討」,逢甲大學統計與精算研究所,83年。
【3】陳強,「汽車保險費率釐訂精算報告」,台北市產物保險同業公會,84年。
【4】陳建龍,「汽車車體損失保險費率釐訂及相關問題探討」,逢甲大學統計與精算研究所,84年。
【5】林煒傑,「強制汽車責任保費費率從人因素係數之探討」,逢甲大學統計與精算研究所,85年。
【6】林進田、吳瑞雲,「強制汽車責任保險加減費系統之探討」,保險專刊 第48輯,86年。
【7】蘇鈺芳,「從損失產生過程探討汽車險純保費之估計」,逢甲大學統計與精算研究所,87年。
【8】王健亞,「類神經網路在臨床心理醫療費用精算模型之應用」,逢甲大學統計與精算研究所,88年。
【9】賴曜賢,實用財產及責任保險費訂定原理,88年。
【10】林進田等著,高等產險精算理論與實務,89年。
【11】羅華強編,類神經網路 ~ MATLAB的應用,90年。
【12】劉坤民,「以類神經網路建構全民健保論人計酬風險調整模型」,高雄第一科技大學風險管理與保險研究所,90年。
【13】楊雅媛,「迴歸分析與類神經網路預測能力之比較」,政治大學統計研究所,91年。
【14】翁永富,「強制汽車責任保險因素之分~應用類神經網路」,高雄第一科技大學風險管理與保險研究所,91年。
【15】許金泉,「台灣汽車車體險之損失率與消費者特性之相關性研究」,政治大學EMBA,91年。
【16】葉怡成編,類神經網路模式應用與實作,92年。
【17】許勝仁,「建構可供保險公司費率釐訂之資料採礦模式-以汽車車體損失險為例」,高雄第一科技大學風險管理與保險研究所,92年。
【18】涂靜儀,「結合自組織映射圖類神經網路與基因演算法建構壽險業顧客關係管理之知識採擷模式」,高雄第一科技大學風險管理與保險研究所,92年。
【19】張斐章等著,類神經網路理論與實務,92年。
英文部份
【1】Anderson, D. et al.,“A Practitioner’s Guide to Generalized Linear Models”, Casualty Actuarial Society Forum, 2003
【2】Bailey, Robert. & LeRoy, Simon,“Two Studies in Automobile Insurance Ratemaking”, Proceedings of The Casualty Actuarial Society., 1960
【3】Brown, Robert,“Minimum Bias with Generalized Linear Models”, PCAS., 1988
【4】Brocket, P. & Cooper, W.,“A Neural Network Method for Obtaining An Early Warning Of Insurer Insolvency”, Journal of Risk & Insurance, 1994
【5】Charles, D., et al. “Statistical Learning Algorithms Applied to Automobile Insurance Ratemaking”, CAS Forum, 2003
【6】Cristina, Mano. & Elena, Rasa“ A Discussion of Modeling Techniques For Personal Lines Pricing”,Trans 27th ICA, 2002
【7】Feldblum, Sholom & Brosius, Eric.“The Minimum bias procedure- A Practitioner’s Guide”. CAS Forum, 2003
【8】Hadidi, Nasser,“Classification Ratemaking Using Decision Tree”. CAS Forum, 2003
【9】Kecman, Vojislav. Learning and Soft Computing: support vector machines, neural networks, and fuzzy logic models. Massachusetts Institute of Technology, 2002
【10】McClelland T.L. & Rumbelhart D.E.“Parallel Distributed Processing ”, MIT Press and the PDP Research Group, 1986.
【11】McCulloch W.S. & Pitts W.“A logical Calculus of the Ideas Immanent in Nervous Activity”,Bulletin of Mathematical Biophysics, 1943.
【12】Minsky M.L. & Papert S.A. Perceptrons.Combridge.MA:MITPRess, 1969.
【13】Mildenhall, Stephen,“A systematic relationship between minimum bias and generalized linear models”,PCAS., 1999.
【14】Rosenblatt F. “The perceptron: A Probabilistic Model for Information Storage and organization in the Brain”.Psych.Rev.65,1958
【15】Smith, Murray“Neural Networks for Statistical Modeling”. NY: Van Nostrand Reinhold, 1993.
【16】Spights, et al., “Using Neural Networks to Predict Claim Duration in the Presence of Right Censoring and Covariates”. CAS Forum, 1999.
【17】Ripley, B.D. ,et al. Modern Applied Statistics with S. Fourth Edition. Springer, 2002
【18】Weiberg, H. I. & Tomberlin, T. J.“A Statistical Perspective on Actuarial Methods for Estimating Pure Premiums from Cross-classified Data”, Journal of Risk & Insurance, 4(Dec.)1982.
描述 碩士
國立政治大學
風險管理與保險研究所
90358021
92
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0090358021
資料類型 thesis
dc.contributor.advisor 黃泓智<br>余清祥zh_TW
dc.contributor.advisor Huang, Hung-Chin Jerry<br>Yue, Ching-Syang Jacken_US
dc.contributor.author (作者) 陳志昌zh_TW
dc.contributor.author (作者) Chen, Chi-Chang Seasonen_US
dc.creator (作者) 陳志昌zh_TW
dc.creator (作者) Chen, Chi-Chang Seasonen_US
dc.date (日期) 2003en_US
dc.date.accessioned 2009-09-18-
dc.date.available 2009-09-18-
dc.date.issued (上傳時間) 2009-09-18-
dc.identifier (其他 識別碼) G0090358021en_US
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/34109-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 風險管理與保險研究所zh_TW
dc.description (描述) 90358021zh_TW
dc.description (描述) 92zh_TW
dc.description.abstract (摘要) 自1999年以來,台灣汽車車體損失險的投保率下降且損失率逐年上升,與強制第三責任險損失率逐年下降形成強烈對比,理論上若按個人風險程度計收保費,吸引價格認同的被保險人加入並對高風險者加費,則可提高投保率並且確保損失維持在合理範圍內。基於上述背景,本文採用國內某產險公司1999至2002年汽車車體損失保險資料為依據,探討過去保費收入與未來賠款支出的關係,在滿足不偏性的要求下,尋求降低預測誤差變異數的方法。

研究結果顯示:車體損失險存在保險補貼。以最小誤差估計法計算的新費率,可以改善收支不平衡的現象,但對於應該減費的低風險保戶,以及應該加費的高高風險保戶,以類神經網路推計的加減費系統具有較大加減幅度,因此更能有效的區分高低風險群組,降低不同危險群組間的補貼現象,並在跨年度的資料中具有較小的誤差變異。
zh_TW
dc.description.abstract (摘要) In the past five years, the insured rate of Automobile Material Damage Insurance (AMDI) has been declined but the loss ratio is climbing, in contrast to the decreasing trend in the loss ratio of the compulsory automobile liability insurance. By charging corresponding premium based on individual risks, we could attract low risk entrant and reflect the highly risk costs. The loss ratio can thus be modified to a reasonable level. To further illustrate the concept, we aim to take the AMDI to study the most efficient estimator of the future claim. Because the relationship of loss experience (input) and future claim estimation (output) is similar to the human brain performs. We can analyze the relation by minimum bias procedure and artificial neural network, reducing error with overall rate level could go through with minimum error of classes or individual, demonstrated using policy year 1999 to 2002 data.

According to the thesis, cross subsidization exists in Automobile Material Damage Insurance. The new rate produced by minimum bias estimate can alleviate the unbalance between the premium and loss. However the neural network classification rating can allocate those premiums more fairly, where ‘fairly’ means that higher premiums are paid by those insured with greater risk of loss and vice-versa. Also, it is the more efficient than the minimum bias estimator in the panel data.
en_US
dc.description.tableofcontents 第1章. 緒論
1.1 研究動機與目標
1.2 資料來源與研究流程
1.3 論文編排
第2章. 文獻探討與模型介紹
2.1 最小偏差估計法
2.2 類神經網路
2.3 綜合討論對本文的啓示
第3章. 研究設計
3.1 資料描述與現況分析
3.2 最小偏差估計模型
3.3 類神經網路模型
3.4 模型比較基礎
第4章. 實證結果
4.1 最小偏差分類係數
4.2 類神經網路加減費係數
4.3 模型比較
第5章. 結論與建議
5.1 結論
5.2 建議
參考文獻
附錄
zh_TW
dc.format.extent 81271 bytes-
dc.format.extent 123892 bytes-
dc.format.extent 181038 bytes-
dc.format.extent 230179 bytes-
dc.format.extent 309677 bytes-
dc.format.extent 526869 bytes-
dc.format.extent 620443 bytes-
dc.format.extent 703525 bytes-
dc.format.extent 346182 bytes-
dc.format.extent 123214 bytes-
dc.format.extent 1123091 bytes-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0090358021en_US
dc.subject (關鍵詞) 汽車車體損失保險zh_TW
dc.subject (關鍵詞) 損失率zh_TW
dc.subject (關鍵詞) 最小誤差估計法zh_TW
dc.subject (關鍵詞) 類神經網路zh_TW
dc.subject (關鍵詞) Automobile Material Damage Insuranceen_US
dc.subject (關鍵詞) Loss Ratioen_US
dc.subject (關鍵詞) Minimum Bias Estimateen_US
dc.subject (關鍵詞) Artificial Neural Networken_US
dc.title (題名) 類神經網路在汽車保險費率擬訂的應用zh_TW
dc.title (題名) Artificial Neural Network Applied to Automobile Insurance Ratemakingen_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) 中文部份zh_TW
dc.relation.reference (參考文獻) 【1】梁正德,「再談我國汽車保險從人因素係數之釐訂」,保險專刊 第32輯,82年。zh_TW
dc.relation.reference (參考文獻) 【2】魏長賢,「肇事記錄對汽車保險費率影響之探討」,逢甲大學統計與精算研究所,83年。zh_TW
dc.relation.reference (參考文獻) 【3】陳強,「汽車保險費率釐訂精算報告」,台北市產物保險同業公會,84年。zh_TW
dc.relation.reference (參考文獻) 【4】陳建龍,「汽車車體損失保險費率釐訂及相關問題探討」,逢甲大學統計與精算研究所,84年。zh_TW
dc.relation.reference (參考文獻) 【5】林煒傑,「強制汽車責任保費費率從人因素係數之探討」,逢甲大學統計與精算研究所,85年。zh_TW
dc.relation.reference (參考文獻) 【6】林進田、吳瑞雲,「強制汽車責任保險加減費系統之探討」,保險專刊 第48輯,86年。zh_TW
dc.relation.reference (參考文獻) 【7】蘇鈺芳,「從損失產生過程探討汽車險純保費之估計」,逢甲大學統計與精算研究所,87年。zh_TW
dc.relation.reference (參考文獻) 【8】王健亞,「類神經網路在臨床心理醫療費用精算模型之應用」,逢甲大學統計與精算研究所,88年。zh_TW
dc.relation.reference (參考文獻) 【9】賴曜賢,實用財產及責任保險費訂定原理,88年。zh_TW
dc.relation.reference (參考文獻) 【10】林進田等著,高等產險精算理論與實務,89年。zh_TW
dc.relation.reference (參考文獻) 【11】羅華強編,類神經網路 ~ MATLAB的應用,90年。zh_TW
dc.relation.reference (參考文獻) 【12】劉坤民,「以類神經網路建構全民健保論人計酬風險調整模型」,高雄第一科技大學風險管理與保險研究所,90年。zh_TW
dc.relation.reference (參考文獻) 【13】楊雅媛,「迴歸分析與類神經網路預測能力之比較」,政治大學統計研究所,91年。zh_TW
dc.relation.reference (參考文獻) 【14】翁永富,「強制汽車責任保險因素之分~應用類神經網路」,高雄第一科技大學風險管理與保險研究所,91年。zh_TW
dc.relation.reference (參考文獻) 【15】許金泉,「台灣汽車車體險之損失率與消費者特性之相關性研究」,政治大學EMBA,91年。zh_TW
dc.relation.reference (參考文獻) 【16】葉怡成編,類神經網路模式應用與實作,92年。zh_TW
dc.relation.reference (參考文獻) 【17】許勝仁,「建構可供保險公司費率釐訂之資料採礦模式-以汽車車體損失險為例」,高雄第一科技大學風險管理與保險研究所,92年。zh_TW
dc.relation.reference (參考文獻) 【18】涂靜儀,「結合自組織映射圖類神經網路與基因演算法建構壽險業顧客關係管理之知識採擷模式」,高雄第一科技大學風險管理與保險研究所,92年。zh_TW
dc.relation.reference (參考文獻) 【19】張斐章等著,類神經網路理論與實務,92年。zh_TW
dc.relation.reference (參考文獻) 英文部份zh_TW
dc.relation.reference (參考文獻) 【1】Anderson, D. et al.,“A Practitioner’s Guide to Generalized Linear Models”, Casualty Actuarial Society Forum, 2003zh_TW
dc.relation.reference (參考文獻) 【2】Bailey, Robert. & LeRoy, Simon,“Two Studies in Automobile Insurance Ratemaking”, Proceedings of The Casualty Actuarial Society., 1960zh_TW
dc.relation.reference (參考文獻) 【3】Brown, Robert,“Minimum Bias with Generalized Linear Models”, PCAS., 1988zh_TW
dc.relation.reference (參考文獻) 【4】Brocket, P. & Cooper, W.,“A Neural Network Method for Obtaining An Early Warning Of Insurer Insolvency”, Journal of Risk & Insurance, 1994zh_TW
dc.relation.reference (參考文獻) 【5】Charles, D., et al. “Statistical Learning Algorithms Applied to Automobile Insurance Ratemaking”, CAS Forum, 2003zh_TW
dc.relation.reference (參考文獻) 【6】Cristina, Mano. & Elena, Rasa“ A Discussion of Modeling Techniques For Personal Lines Pricing”,Trans 27th ICA, 2002zh_TW
dc.relation.reference (參考文獻) 【7】Feldblum, Sholom & Brosius, Eric.“The Minimum bias procedure- A Practitioner’s Guide”. CAS Forum, 2003zh_TW
dc.relation.reference (參考文獻) 【8】Hadidi, Nasser,“Classification Ratemaking Using Decision Tree”. CAS Forum, 2003zh_TW
dc.relation.reference (參考文獻) 【9】Kecman, Vojislav. Learning and Soft Computing: support vector machines, neural networks, and fuzzy logic models. Massachusetts Institute of Technology, 2002zh_TW
dc.relation.reference (參考文獻) 【10】McClelland T.L. & Rumbelhart D.E.“Parallel Distributed Processing ”, MIT Press and the PDP Research Group, 1986.zh_TW
dc.relation.reference (參考文獻) 【11】McCulloch W.S. & Pitts W.“A logical Calculus of the Ideas Immanent in Nervous Activity”,Bulletin of Mathematical Biophysics, 1943.zh_TW
dc.relation.reference (參考文獻) 【12】Minsky M.L. & Papert S.A. Perceptrons.Combridge.MA:MITPRess, 1969.zh_TW
dc.relation.reference (參考文獻) 【13】Mildenhall, Stephen,“A systematic relationship between minimum bias and generalized linear models”,PCAS., 1999.zh_TW
dc.relation.reference (參考文獻) 【14】Rosenblatt F. “The perceptron: A Probabilistic Model for Information Storage and organization in the Brain”.Psych.Rev.65,1958zh_TW
dc.relation.reference (參考文獻) 【15】Smith, Murray“Neural Networks for Statistical Modeling”. NY: Van Nostrand Reinhold, 1993.zh_TW
dc.relation.reference (參考文獻) 【16】Spights, et al., “Using Neural Networks to Predict Claim Duration in the Presence of Right Censoring and Covariates”. CAS Forum, 1999.zh_TW
dc.relation.reference (參考文獻) 【17】Ripley, B.D. ,et al. Modern Applied Statistics with S. Fourth Edition. Springer, 2002zh_TW
dc.relation.reference (參考文獻) 【18】Weiberg, H. I. & Tomberlin, T. J.“A Statistical Perspective on Actuarial Methods for Estimating Pure Premiums from Cross-classified Data”, Journal of Risk & Insurance, 4(Dec.)1982.zh_TW