學術產出-學位論文

題名 布蘭特原油期貨的波動率-以馬可夫移轉模型分析
Regime-switched volatility of Brent crude oil futures using Markov-switching ARCH model
作者 邱天禹
Chiu, Tien-Yu
貢獻者 謝淑貞
Shieh, Shwu-Jane
邱天禹
Chiu, Tien-Yu
關鍵詞 馬可夫轉換
波動率
布蘭特原油
Markov-switching ARCH
SWARCH
volatility
Brent crude oil
日期 2005
上傳時間 18-九月-2009 14:09:54 (UTC+8)
摘要 本篇論文使用SWARCH模型探討布蘭特原油期貨市場的波動性。SWARCH模型將條件變異設定為可隨時間變動而改變,甚至移轉到不同的區間上。實證結果顯示SWARCH (3,3)模型具有最佳配適度與最準確的預測能力。樣本在不同區間下的平滑機率的估計值有助於補捉資料特性,而且當樣本落在高波動率區間上時會對應著重大事件的發生,如1990年波斯灣戰爭、1997年亞洲金融風暴與2001年的911恐怖攻擊。
This paper investigates the volatility of the Brent crude oil futures markets using Markov-switching ARCH (SWARCH) model. The SWARCH model allows the conditional disturbances to change as time passes and even to switch in different regimes. The empirical evidence shows that the SWARCH (3,3) model performs the best goodness of fit and the best forecast performance between different fitting models. The estimation of smoothing probabilities of data under different regimes facilitates to capture the characteristics of data, and the high-volatility regime is associated with the extraordinary events, such as the 1990’s Persian Gulf War, the 1997’s Asia Financial Crisis, and the 2001’s 911 terrorist attack.
參考文獻 Bollerslev T. Generalized autogressive conditional heteroskedasticity. Journal of Econometrics, 1986.
Cai J. A Markov Model of Switching-Regime ARCH. Journal of Business and Economic Statistics, 1994.
Cologni A., Manera M. The asymmetric effects of oil shocks on output growth: A Markov-switching analysis for the G-7 countries. Working paper, 2006.
Dickey D.A., Fuller W.A. Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association, 1979.
Diebold, F. X. Modelling the persistence of conditional variance: A comment. Econometric Review, 1986.
Enders W. Applied econometric time series, second edition. University of Alabama.
Engle R.F. Autoregressive conditional heteroskedasticity with estimates of the variance of United Kingdom inflation. Econometrica, 1982.
Hamilton J. D., Susmel R. Autoregressive conditional heteroskedasticity and changes in regime. Journal of Econometrics, 1994.
Hamilton J. D. A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle. Econometrica, 1989.
Jiang S.L., Wang C.F., Wu X.L. Investigating on volatility OF Chinese stock market by regime-switching ARCH model. Journal of systems engineering, 2004.
Kumar, Manmohan. Forecasting Accuracy of Crude Oil Futures Prices. IMF Working paper, 2006.
Lamoureux C. G., Lastrapes W. D. Persistence in variance, structural change and the GARCH model. Journal of Business and Economic Statistics, 1990.
Pagano P., Pisani M. Risk-adjusted forecasts of oil prices. Bank of Italy Economic Research Paper,2006.
Phillips P.C.B., Perron P. Testing for a unit root in time series regression. Biometrika,1988.
Tsay R.S. Analysis of financial time series, financial econometrics. University of Chicago.
Yang Z. Estimation of Markov Regime-Switching Model. Working paper, 2004.
描述 碩士
國立政治大學
國際經營與貿易研究所
93351006
94
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0093351006
資料類型 thesis
dc.contributor.advisor 謝淑貞zh_TW
dc.contributor.advisor Shieh, Shwu-Janeen_US
dc.contributor.author (作者) 邱天禹zh_TW
dc.contributor.author (作者) Chiu, Tien-Yuen_US
dc.creator (作者) 邱天禹zh_TW
dc.creator (作者) Chiu, Tien-Yuen_US
dc.date (日期) 2005en_US
dc.date.accessioned 18-九月-2009 14:09:54 (UTC+8)-
dc.date.available 18-九月-2009 14:09:54 (UTC+8)-
dc.date.issued (上傳時間) 18-九月-2009 14:09:54 (UTC+8)-
dc.identifier (其他 識別碼) G0093351006en_US
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/35100-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 國際經營與貿易研究所zh_TW
dc.description (描述) 93351006zh_TW
dc.description (描述) 94zh_TW
dc.description.abstract (摘要) 本篇論文使用SWARCH模型探討布蘭特原油期貨市場的波動性。SWARCH模型將條件變異設定為可隨時間變動而改變,甚至移轉到不同的區間上。實證結果顯示SWARCH (3,3)模型具有最佳配適度與最準確的預測能力。樣本在不同區間下的平滑機率的估計值有助於補捉資料特性,而且當樣本落在高波動率區間上時會對應著重大事件的發生,如1990年波斯灣戰爭、1997年亞洲金融風暴與2001年的911恐怖攻擊。zh_TW
dc.description.abstract (摘要) This paper investigates the volatility of the Brent crude oil futures markets using Markov-switching ARCH (SWARCH) model. The SWARCH model allows the conditional disturbances to change as time passes and even to switch in different regimes. The empirical evidence shows that the SWARCH (3,3) model performs the best goodness of fit and the best forecast performance between different fitting models. The estimation of smoothing probabilities of data under different regimes facilitates to capture the characteristics of data, and the high-volatility regime is associated with the extraordinary events, such as the 1990’s Persian Gulf War, the 1997’s Asia Financial Crisis, and the 2001’s 911 terrorist attack.en_US
dc.description.tableofcontents 1. Introduction 1
2. Methodology 5
2-1 Markov-switching ARCH (SWARCH) model 5
2-1-1 Markov chain and SWARCH model 5
2-1-2 Filter probability and smoothing probability 7
2-2 Maxima likelihood estimator 9
2-3 Forecast performance 9
3. Data and empirical result 10
3-1 Data 10
3-2 Statistic characteristics of data 12
3-3 Empirical results 13
3-3-1 Statistic fit comparisons for various specifications of different models 13
3-3-2 The forecast performance of different models 14
3-3-3 The estimation model and the probability under different regimes 14
4. Conclusions 16
Appendix 18
Reference 18
Table 1 Descriptive Statistics of 20
Table 2 ADF and PP Test 21
Table 3 Statistic fit comparisons for various specifications of different models 22
Table 4 Forecast performance of different models 23
Figure 1 Daily closing price series and daily log-return series 24
Figure 2 Q-Q plot against Normal and Student-t(7) 25
Figure 3 ACF and PACF of log-return 26
Figure 4 ACF and PACF of square of log-return 27
Figure 5 Smoothing probability under different regimes 28
zh_TW
dc.format.extent 42938 bytes-
dc.format.extent 70900 bytes-
dc.format.extent 61607 bytes-
dc.format.extent 39251 bytes-
dc.format.extent 23271 bytes-
dc.format.extent 50743 bytes-
dc.format.extent 54534 bytes-
dc.format.extent 14676 bytes-
dc.format.extent 16516 bytes-
dc.format.extent 212324 bytes-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0093351006en_US
dc.subject (關鍵詞) 馬可夫轉換zh_TW
dc.subject (關鍵詞) 波動率zh_TW
dc.subject (關鍵詞) 布蘭特原油zh_TW
dc.subject (關鍵詞) Markov-switching ARCHen_US
dc.subject (關鍵詞) SWARCHen_US
dc.subject (關鍵詞) volatilityen_US
dc.subject (關鍵詞) Brent crude oilen_US
dc.title (題名) 布蘭特原油期貨的波動率-以馬可夫移轉模型分析zh_TW
dc.title (題名) Regime-switched volatility of Brent crude oil futures using Markov-switching ARCH modelen_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) Bollerslev T. Generalized autogressive conditional heteroskedasticity. Journal of Econometrics, 1986.zh_TW
dc.relation.reference (參考文獻) Cai J. A Markov Model of Switching-Regime ARCH. Journal of Business and Economic Statistics, 1994.zh_TW
dc.relation.reference (參考文獻) Cologni A., Manera M. The asymmetric effects of oil shocks on output growth: A Markov-switching analysis for the G-7 countries. Working paper, 2006.zh_TW
dc.relation.reference (參考文獻) Dickey D.A., Fuller W.A. Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association, 1979.zh_TW
dc.relation.reference (參考文獻) Diebold, F. X. Modelling the persistence of conditional variance: A comment. Econometric Review, 1986.zh_TW
dc.relation.reference (參考文獻) Enders W. Applied econometric time series, second edition. University of Alabama.zh_TW
dc.relation.reference (參考文獻) Engle R.F. Autoregressive conditional heteroskedasticity with estimates of the variance of United Kingdom inflation. Econometrica, 1982.zh_TW
dc.relation.reference (參考文獻) Hamilton J. D., Susmel R. Autoregressive conditional heteroskedasticity and changes in regime. Journal of Econometrics, 1994.zh_TW
dc.relation.reference (參考文獻) Hamilton J. D. A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle. Econometrica, 1989.zh_TW
dc.relation.reference (參考文獻) Jiang S.L., Wang C.F., Wu X.L. Investigating on volatility OF Chinese stock market by regime-switching ARCH model. Journal of systems engineering, 2004.zh_TW
dc.relation.reference (參考文獻) Kumar, Manmohan. Forecasting Accuracy of Crude Oil Futures Prices. IMF Working paper, 2006.zh_TW
dc.relation.reference (參考文獻) Lamoureux C. G., Lastrapes W. D. Persistence in variance, structural change and the GARCH model. Journal of Business and Economic Statistics, 1990.zh_TW
dc.relation.reference (參考文獻) Pagano P., Pisani M. Risk-adjusted forecasts of oil prices. Bank of Italy Economic Research Paper,2006.zh_TW
dc.relation.reference (參考文獻) Phillips P.C.B., Perron P. Testing for a unit root in time series regression. Biometrika,1988.zh_TW
dc.relation.reference (參考文獻) Tsay R.S. Analysis of financial time series, financial econometrics. University of Chicago.zh_TW
dc.relation.reference (參考文獻) Yang Z. Estimation of Markov Regime-Switching Model. Working paper, 2004.zh_TW