學術產出-學位論文

題名 以厚尾分配及緩長記憶特性模型分析日圓匯率期貨報酬之風險值
VaR Analysis for the Dollar/Yen Exchange Rate Futures Returns with Fat-Tails and Long Memory
作者 鄭士緯
Cheng, Shih-Wei
貢獻者 謝淑貞
Shieh, Shwu-Jane
鄭士緯
Cheng, Shih-Wei
關鍵詞 長期記憶性(緩長記憶性)
雙曲自迴歸條件變異數
風險值
Kupiec LR 檢定法
日圓匯率期貨
Long Memory
HYGARCH
VaR (Value-at-Risk)
Kupiec LR test
the Dollar/Yen futures
日期 2005
上傳時間 18-九月-2009 14:11:09 (UTC+8)
摘要 本篇文章將採用長期記憶模型之一的HYGARCH模型,搭配1985年廣場協議後的日圓匯率期貨資料來估計日圓期貨匯率買入和放空部位的日報酬風險值,探討控管日圓匯率期貨在使用上的風險。為了更準確地計算風險值,本文採用常態分配、學生t分配以及偏態學生t分配來作模型估計以及風險值之計算。

本文實證的結果將有兩方面的貢獻:首先,實證結果顯示當我們採用厚尾分配估計風險值時,樣本內風險值的估計誤差會與信賴水準的高低呈正比的現象,證明在極端的風險值估計上,厚尾分配均有較佳的表現。其次,與其他使用HYGARCH模型研究日圓匯率的文章相較,本文在風險控管層面上所提供的偏態學生t分配,於估計風險值時,比起只考慮厚尾的對稱學生t分配將來得更為有效,其不但在估計誤差上較小,而且根據Kupiec檢定法,其在樣本內的風險值估計也有較好的表現。此外,本文也將多方證明此資料的偏態分配屬於右偏。
In order to manage the exposure of the dollar/yen futures returns with regarding the long memory behavior in volatility, we use the HYGARCH(1,d,1) model with the data after the Plaza Accord to compute daily Value-at-Risk (VaR) of long and short trading positions. To take into account the fat-tail situation in financial time series, we estimate the model under the normal, Student-t, and skewed Student-t distributions. The contribution of this article is twofold. First, the empirical results show that the bias of in-sample VaR increases as the confidence level increases when VaR is calculated with a fat-tail distribution. Second, we provide a better distribution, the skewed Student-t innovation, for estimating the HYGARCH model for the Japanese yen in respect of risk management because the bias under the skewed Student-t innovation is smaller than that under the Student-t distribution, and in-sample VaR of the models with a skewed Student-t distribution outperforms based on Kupiec test. In addition, we get the innovation skewed to the right through the in-sample VaR analysis.
參考文獻 1. Akaike, H. 1974, A new look at the statistical model indentification, IEEE Transactions on Automatic Control, AC-19,716-723.
2. Baillie, R.T., T. Bollerslev, and H.O. Mikkelsen, 1996, Fractionally integrated generalized autoregressive conditional heteroskedasticity, Journal of Econometrics, 74, pp.3-30.
3. Beine, M., A. Benassy-Quere, and C. Lecourt, 1999, The impact of foreign exchange interventions: New evidence from FIGARCH estimations, CEPII, document de travail, n° 99-14, pp.7-37.
4. Baine, M. and S. Laurent, 2000, Structural change and long memory in volatility: new evidence from daily exchange rates. In “Developments in forecast combination and portfolio choice” by Dunis, C., A. Timmermann and J. Moody (eds.). Wiley, New York.
5. Beine, M., S. Laurent, and C. Lecourt, 2002, Accounting for conditional leptokurtosis and closing days effect in FIGARCH models of daily exchange rates, Applied Financial Economics, 12, pp.589-600.
6. Bollerslev, T. and H.O. Mikkelsen, 1996, Modeling and pricing long- memory in stock market volatility, Journal of Econometrics, 73, pp.151-184.
7. Davidson J., 2004, Moment and Memory Properties of Linear Conditional Heteroscedasticity Models, and a New Model, Journal of Business & Economic Statistics, 22, 16-29.
8. de Vries, C.G..,1991, On the relation between GARCH and stable processes, Journal of Econometrics, 48, pp.313-324
9. Dickey, D.A., and W.A. Fuller, 1979, Distribution of the estimators for autoregressive times series with a unit root, Journal of the American Statistical Association, Vol.74, pp.427-431.
10. Ding, Z., C.W.J. Granger, and R.F. Engle, 1993, A long memory property of stock market returns and a new model, Journal of Empirical Finance, 1, pp 83-106.
11. Ding, Z. and C.W.J. Granger, 1996, Modeling volatility persistence of speculative returns: A new approach, Journal of Econometrics, 73, pp.185-215.
12. Doornik, A., G. Draisma, and M. Ooms, 2001, Introduction to Ox, version 3, Timberlake Consultants Ltd.
13. Engle, R.F., 1982, Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation, Econometrica, 50, pp. 987-1007.
14. Engle, R.F. and T. Bollerslev, 1986, Modeling the persistence of conditional variance, Econometric Reviews, 5, pp.1-50.
15. Gray, S.F., 1996, Modeling conditional distribution of interest rates as a regime-switching process, Journal of Financial Economics, 42, 27-62
16. Gupta, A., and B. Liang, 2005, Do hedge funds have enough capital? A value-at-risk approach, Journal of Econometrics, 77, pp.219-253.
17. Hamilton, J.D. and R. Susmel, 1994, Autoregressive conditional heteroskedasticity and changes in regime, Journal of Econometrics, 64, pp.307-333
18. Inui, K., M. Kijima, and A. Kitano, 2003, VaR is subject to a significant positive bias, working paper.
19. Jorian, P., 2000, Risk management lessons from long term capital management, European Financial Management, 6, pp.277-300.
20. Jorian, P., 2001, Value At Risk: The new benchmark for managing financial risk, second ed. McGraw-Hill Publication, New York.
21. Kupiec, P., 1995, Techniques for verifying the accuracy of risk measurement models, Journal of Derivatives, 2, pp.174-184.
22. Kwiaowski, D., P.C.B. Phillips, P. Schmidt, and Y. Shin, 1992, Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root? Journal of Econometrics, 54, pp.159-178.
23. Li, X., Q. Xu, 2006, Assessing tail-related risks in Asian emerging equity markets, working paper.
24. Ljung, G., and G.. Box, 1978, On a measure of lack of fit in time series models, Biometrika, 65, pp.297-303.
25. Lo, A.W., 1991, Long term memory in stock market prices, Econometrica, 59, pp.1279-1313.
26. Philips, P.C.B. and P. Perron, 1988, Testing for a unit root in time series regression, Biometrika, 75, pp.335-346.
27. Sarantis, N., 1999, Modeling nonlinearities in real effective exchange rates, Journal of International Money and Finance, 18, pp.27-45.
28. Schmidt, P., 1990, Dickey-Fuller tests with drift, Advances in Econometrics, 8, pp.161-200
29. West, K.D., H.J. Edison, and D. Cho, 1993, A utility-based comparison of some model of exchange rate volatility, Journal of International Economics, 35, pp.23-45
描述 碩士
國立政治大學
國際經營與貿易研究所
93351025
94
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0093351025
資料類型 thesis
dc.contributor.advisor 謝淑貞zh_TW
dc.contributor.advisor Shieh, Shwu-Janeen_US
dc.contributor.author (作者) 鄭士緯zh_TW
dc.contributor.author (作者) Cheng, Shih-Weien_US
dc.creator (作者) 鄭士緯zh_TW
dc.creator (作者) Cheng, Shih-Weien_US
dc.date (日期) 2005en_US
dc.date.accessioned 18-九月-2009 14:11:09 (UTC+8)-
dc.date.available 18-九月-2009 14:11:09 (UTC+8)-
dc.date.issued (上傳時間) 18-九月-2009 14:11:09 (UTC+8)-
dc.identifier (其他 識別碼) G0093351025en_US
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/35109-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 國際經營與貿易研究所zh_TW
dc.description (描述) 93351025zh_TW
dc.description (描述) 94zh_TW
dc.description.abstract (摘要) 本篇文章將採用長期記憶模型之一的HYGARCH模型,搭配1985年廣場協議後的日圓匯率期貨資料來估計日圓期貨匯率買入和放空部位的日報酬風險值,探討控管日圓匯率期貨在使用上的風險。為了更準確地計算風險值,本文採用常態分配、學生t分配以及偏態學生t分配來作模型估計以及風險值之計算。

本文實證的結果將有兩方面的貢獻:首先,實證結果顯示當我們採用厚尾分配估計風險值時,樣本內風險值的估計誤差會與信賴水準的高低呈正比的現象,證明在極端的風險值估計上,厚尾分配均有較佳的表現。其次,與其他使用HYGARCH模型研究日圓匯率的文章相較,本文在風險控管層面上所提供的偏態學生t分配,於估計風險值時,比起只考慮厚尾的對稱學生t分配將來得更為有效,其不但在估計誤差上較小,而且根據Kupiec檢定法,其在樣本內的風險值估計也有較好的表現。此外,本文也將多方證明此資料的偏態分配屬於右偏。
zh_TW
dc.description.abstract (摘要) In order to manage the exposure of the dollar/yen futures returns with regarding the long memory behavior in volatility, we use the HYGARCH(1,d,1) model with the data after the Plaza Accord to compute daily Value-at-Risk (VaR) of long and short trading positions. To take into account the fat-tail situation in financial time series, we estimate the model under the normal, Student-t, and skewed Student-t distributions. The contribution of this article is twofold. First, the empirical results show that the bias of in-sample VaR increases as the confidence level increases when VaR is calculated with a fat-tail distribution. Second, we provide a better distribution, the skewed Student-t innovation, for estimating the HYGARCH model for the Japanese yen in respect of risk management because the bias under the skewed Student-t innovation is smaller than that under the Student-t distribution, and in-sample VaR of the models with a skewed Student-t distribution outperforms based on Kupiec test. In addition, we get the innovation skewed to the right through the in-sample VaR analysis.en_US
dc.description.tableofcontents 1. Introduction 01
2. Data and Methodology 06
2.1 Data 06
2.2 Methodology 07
2.2.1 FIGARCH 07
2.2.2 HYGARCH 08
2.2.3 VaR 09
2.2.4 Kupiec Test 10
3. Empirical Result 12
3.1 Unit Root Tests and Stationarity Test 12
3.2 Long Memory in Volatility 12
3.3 Estimating the Models 13
3.4 In-Sample and Out-of-Sample VaRs Analyses 14
3.4.1 In-sample VaR computations 15
3.4.2 Out-of-sample VaR computations 16
4. Conclusions 18
References 19
Figures & Tables 23
zh_TW
dc.format.extent 43660 bytes-
dc.format.extent 93197 bytes-
dc.format.extent 80727 bytes-
dc.format.extent 35865 bytes-
dc.format.extent 15354 bytes-
dc.format.extent 45576 bytes-
dc.format.extent 131622 bytes-
dc.format.extent 59158 bytes-
dc.format.extent 24578 bytes-
dc.format.extent 45960 bytes-
dc.format.extent 200879 bytes-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0093351025en_US
dc.subject (關鍵詞) 長期記憶性(緩長記憶性)zh_TW
dc.subject (關鍵詞) 雙曲自迴歸條件變異數zh_TW
dc.subject (關鍵詞) 風險值zh_TW
dc.subject (關鍵詞) Kupiec LR 檢定法zh_TW
dc.subject (關鍵詞) 日圓匯率期貨zh_TW
dc.subject (關鍵詞) Long Memoryen_US
dc.subject (關鍵詞) HYGARCHen_US
dc.subject (關鍵詞) VaR (Value-at-Risk)en_US
dc.subject (關鍵詞) Kupiec LR testen_US
dc.subject (關鍵詞) the Dollar/Yen futuresen_US
dc.title (題名) 以厚尾分配及緩長記憶特性模型分析日圓匯率期貨報酬之風險值zh_TW
dc.title (題名) VaR Analysis for the Dollar/Yen Exchange Rate Futures Returns with Fat-Tails and Long Memoryen_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) 1. Akaike, H. 1974, A new look at the statistical model indentification, IEEE Transactions on Automatic Control, AC-19,716-723.zh_TW
dc.relation.reference (參考文獻) 2. Baillie, R.T., T. Bollerslev, and H.O. Mikkelsen, 1996, Fractionally integrated generalized autoregressive conditional heteroskedasticity, Journal of Econometrics, 74, pp.3-30.zh_TW
dc.relation.reference (參考文獻) 3. Beine, M., A. Benassy-Quere, and C. Lecourt, 1999, The impact of foreign exchange interventions: New evidence from FIGARCH estimations, CEPII, document de travail, n° 99-14, pp.7-37.zh_TW
dc.relation.reference (參考文獻) 4. Baine, M. and S. Laurent, 2000, Structural change and long memory in volatility: new evidence from daily exchange rates. In “Developments in forecast combination and portfolio choice” by Dunis, C., A. Timmermann and J. Moody (eds.). Wiley, New York.zh_TW
dc.relation.reference (參考文獻) 5. Beine, M., S. Laurent, and C. Lecourt, 2002, Accounting for conditional leptokurtosis and closing days effect in FIGARCH models of daily exchange rates, Applied Financial Economics, 12, pp.589-600.zh_TW
dc.relation.reference (參考文獻) 6. Bollerslev, T. and H.O. Mikkelsen, 1996, Modeling and pricing long- memory in stock market volatility, Journal of Econometrics, 73, pp.151-184.zh_TW
dc.relation.reference (參考文獻) 7. Davidson J., 2004, Moment and Memory Properties of Linear Conditional Heteroscedasticity Models, and a New Model, Journal of Business & Economic Statistics, 22, 16-29.zh_TW
dc.relation.reference (參考文獻) 8. de Vries, C.G..,1991, On the relation between GARCH and stable processes, Journal of Econometrics, 48, pp.313-324zh_TW
dc.relation.reference (參考文獻) 9. Dickey, D.A., and W.A. Fuller, 1979, Distribution of the estimators for autoregressive times series with a unit root, Journal of the American Statistical Association, Vol.74, pp.427-431.zh_TW
dc.relation.reference (參考文獻) 10. Ding, Z., C.W.J. Granger, and R.F. Engle, 1993, A long memory property of stock market returns and a new model, Journal of Empirical Finance, 1, pp 83-106.zh_TW
dc.relation.reference (參考文獻) 11. Ding, Z. and C.W.J. Granger, 1996, Modeling volatility persistence of speculative returns: A new approach, Journal of Econometrics, 73, pp.185-215.zh_TW
dc.relation.reference (參考文獻) 12. Doornik, A., G. Draisma, and M. Ooms, 2001, Introduction to Ox, version 3, Timberlake Consultants Ltd.zh_TW
dc.relation.reference (參考文獻) 13. Engle, R.F., 1982, Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation, Econometrica, 50, pp. 987-1007.zh_TW
dc.relation.reference (參考文獻) 14. Engle, R.F. and T. Bollerslev, 1986, Modeling the persistence of conditional variance, Econometric Reviews, 5, pp.1-50.zh_TW
dc.relation.reference (參考文獻) 15. Gray, S.F., 1996, Modeling conditional distribution of interest rates as a regime-switching process, Journal of Financial Economics, 42, 27-62zh_TW
dc.relation.reference (參考文獻) 16. Gupta, A., and B. Liang, 2005, Do hedge funds have enough capital? A value-at-risk approach, Journal of Econometrics, 77, pp.219-253.zh_TW
dc.relation.reference (參考文獻) 17. Hamilton, J.D. and R. Susmel, 1994, Autoregressive conditional heteroskedasticity and changes in regime, Journal of Econometrics, 64, pp.307-333zh_TW
dc.relation.reference (參考文獻) 18. Inui, K., M. Kijima, and A. Kitano, 2003, VaR is subject to a significant positive bias, working paper.zh_TW
dc.relation.reference (參考文獻) 19. Jorian, P., 2000, Risk management lessons from long term capital management, European Financial Management, 6, pp.277-300.zh_TW
dc.relation.reference (參考文獻) 20. Jorian, P., 2001, Value At Risk: The new benchmark for managing financial risk, second ed. McGraw-Hill Publication, New York.zh_TW
dc.relation.reference (參考文獻) 21. Kupiec, P., 1995, Techniques for verifying the accuracy of risk measurement models, Journal of Derivatives, 2, pp.174-184.zh_TW
dc.relation.reference (參考文獻) 22. Kwiaowski, D., P.C.B. Phillips, P. Schmidt, and Y. Shin, 1992, Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root? Journal of Econometrics, 54, pp.159-178.zh_TW
dc.relation.reference (參考文獻) 23. Li, X., Q. Xu, 2006, Assessing tail-related risks in Asian emerging equity markets, working paper.zh_TW
dc.relation.reference (參考文獻) 24. Ljung, G., and G.. Box, 1978, On a measure of lack of fit in time series models, Biometrika, 65, pp.297-303.zh_TW
dc.relation.reference (參考文獻) 25. Lo, A.W., 1991, Long term memory in stock market prices, Econometrica, 59, pp.1279-1313.zh_TW
dc.relation.reference (參考文獻) 26. Philips, P.C.B. and P. Perron, 1988, Testing for a unit root in time series regression, Biometrika, 75, pp.335-346.zh_TW
dc.relation.reference (參考文獻) 27. Sarantis, N., 1999, Modeling nonlinearities in real effective exchange rates, Journal of International Money and Finance, 18, pp.27-45.zh_TW
dc.relation.reference (參考文獻) 28. Schmidt, P., 1990, Dickey-Fuller tests with drift, Advances in Econometrics, 8, pp.161-200zh_TW
dc.relation.reference (參考文獻) 29. West, K.D., H.J. Edison, and D. Cho, 1993, A utility-based comparison of some model of exchange rate volatility, Journal of International Economics, 35, pp.23-45zh_TW