dc.contributor.advisor | 諶家蘭<br>季延平 | zh_TW |
dc.contributor.advisor | Seng,Jia Lang<br>Chi,Yen Ping | en_US |
dc.contributor.author (作者) | 陳庭鈞 | zh_TW |
dc.contributor.author (作者) | Chen,Tin Jiun | en_US |
dc.creator (作者) | 陳庭鈞 | zh_TW |
dc.creator (作者) | Chen,Tin Jiun | en_US |
dc.date (日期) | 2005 | en_US |
dc.date.accessioned | 18-九月-2009 14:30:17 (UTC+8) | - |
dc.date.available | 18-九月-2009 14:30:17 (UTC+8) | - |
dc.date.issued (上傳時間) | 18-九月-2009 14:30:17 (UTC+8) | - |
dc.identifier (其他 識別碼) | G0093356031 | en_US |
dc.identifier.uri (URI) | https://nccur.lib.nccu.edu.tw/handle/140.119/35231 | - |
dc.description (描述) | 碩士 | zh_TW |
dc.description (描述) | 國立政治大學 | zh_TW |
dc.description (描述) | 資訊管理研究所 | zh_TW |
dc.description (描述) | 93356031 | zh_TW |
dc.description (描述) | 94 | zh_TW |
dc.description.abstract (摘要) | 由於資訊科技的進步與網路的普及,企業得以收集與儲存大量的資料。使用資訊工具來協助資料處理、資訊擷取、以及產生知識已然變成企業的重要課題之一,所以如何良好運用資料探勘工具成為使用者關注的焦點。由於並非每一個使用者對於資料探勘的原理都有充分的了解,所以如何從探勘工具提供的功能中選用最佳的解決方案並不容易。如果對於探勘結果不滿意而需要調整軟體邏輯,與IT人員的協商溝通卻又曠日費時。為了解決這個問題,本研究提出一個演算法選擇方法,藉由分析商業應用的內容,來自動對應到特定的資料探勘方法與演算法,讓選擇演算法的過程更為快速、更系統化,提升利用資料探勘工具解決商業問題的效率。 | zh_TW |
dc.description.abstract (摘要) | Due to the information technology improvement and the growth of internet, companies are able to collect and to store huge amount of data. Using data mining technology to aid the data processing, information retrieval and knowledge generation process has become one of the critical missions to enterprise, so how to use data mining tools properly is users’ concern. Since not every user completely understand the theory of data mining, choosing the best solution from the functions which data mining tools provides is not easy. If user is not satisfied with the outcome of mining, communication with IT employees to adjust the software costs lots of time.To solve this problem, a selection model of data mining algorithms is proposed. By analyzing the content of business application, user’s requirement will map to certain data mining category and algorithm. This method makes algorithm selection faster and reasonable to improve the efficiency of applying data mining tools to solve business problems. | en_US |
dc.description.tableofcontents | Table of Contents IList of Tables IIIList of Figures IVChapter 1 Introduction 11.1 Research Background 11.2 Research Objectives 11.3 Research Issues 21.4 Research Limitation 31.5 Research Flow 31.6 Organization of the Thesis 4Chapter 2 Literature Review 52.1 Data Mining 52.1.1 Data Mining Definition 62.1.2 Data Mining Structure 82.1.3 Data Mining Method 92.1.4 Data Mining Modeling 112.2 Commercial Applications 122.3 Commercial Applications Related Works 142.4 Summary 23Chapter 3 Research Method 243.1 Business Applications Analysis 243.2 Data Mining Algorithms Analysis 293.2.1 Association Rule Algorithms Analysis 323.2.2 Classification Rule Algorithms Analysis 333.2.3 Prediction Algorithms Analysis 343.2.4 Clustering Algorithms Analysis 343.3 Mapping Business Characteristic to Mining Concept 353.4 A Selection Model in the Application of Data Mining 373.4.1 Research Structure and an Example 373.4.2 Business Side 403.4.3 Mining Side 413.4.4 Selection Model 423.5 Summary 42Chapter 4 Prototype Implementation 444.1 Prototype Platform and System Structure 444.2 Prototype System Design 444.2.1 Database Design 444.2.2 Function Design 464.3 Prototype System Implementation 46Chapter 5 Research Experiment 525.1 Experimental Design 525.2 Test Cases 52Chapter 6 Research Discussion 586.1 Managerial Findings 586.2 Technical Findings 59Chapter 7 Conclusions and Future Research Directions 617.1 Conclusions 617.2 Future Research Directions 61References 63 | zh_TW |
dc.format.extent | 121721 bytes | - |
dc.format.extent | 12820 bytes | - |
dc.format.extent | 62434 bytes | - |
dc.format.extent | 97825 bytes | - |
dc.format.extent | 94916 bytes | - |
dc.format.extent | 94244 bytes | - |
dc.format.extent | 108190 bytes | - |
dc.format.extent | 232223 bytes | - |
dc.format.extent | 290070 bytes | - |
dc.format.extent | 228459 bytes | - |
dc.format.extent | 120012 bytes | - |
dc.format.extent | 100949 bytes | - |
dc.format.extent | 105779 bytes | - |
dc.format.extent | 163432 bytes | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | en_US | - |
dc.source.uri (資料來源) | http://thesis.lib.nccu.edu.tw/record/#G0093356031 | en_US |
dc.subject (關鍵詞) | 資料探勘 | zh_TW |
dc.subject (關鍵詞) | 商業應用 | zh_TW |
dc.subject (關鍵詞) | 選擇方法 | zh_TW |
dc.subject (關鍵詞) | 資料探勘演算法 | zh_TW |
dc.subject (關鍵詞) | Data mining | en_US |
dc.subject (關鍵詞) | Business application | en_US |
dc.subject (關鍵詞) | Selection method | en_US |
dc.subject (關鍵詞) | Data mining algorithm | en_US |
dc.title (題名) | 選擇商業應用資料探勘方法之框架 | zh_TW |
dc.title (題名) | A Framework for Selecting Data Mining Method in Business Application | en_US |
dc.type (資料類型) | thesis | en |
dc.relation.reference (參考文獻) | 1. Agrawal, R., Imielinski, T. and Swami, A. (1993, May). Mining association rules between sets of items in large databases. SIGMOD, Washington. | zh_TW |
dc.relation.reference (參考文獻) | 2. Ahmed, S. R. (2004). Applications of Data Mining in Retail Business. Proceedings of the International Conference on Information Technology: Coding and Computing. | zh_TW |
dc.relation.reference (參考文獻) | 3. Ahn, J. H., and Ezawa, K. J. (1997). Decision support for eeal-time telemarketing operations through bayesian network learning, Decision Support Systems. 21, 17-27 | zh_TW |
dc.relation.reference (參考文獻) | 4. Ahn, J. Y., Kim S. K. and Han, K. S. (2003). On the design concepts for CRM systems. Industrial Management and Data System. 103(5), 324-331. | zh_TW |
dc.relation.reference (參考文獻) | 5. Anand, S. S., Patrick, A. R., Hughes, J. G., and Bell, D. A. (1998). A data mining methodology for cross-sales. Knowledge-Based Systems. 10, 449-461. | zh_TW |
dc.relation.reference (參考文獻) | 6. Apte, C., Liu, Bing, Pednault, E. P. D. and Smyth P. (2002). Business applications of data mining. Communications of the ACM archive. 45(8), 49-53. | zh_TW |
dc.relation.reference (參考文獻) | 7. Arshadi, N. and Jurisica, I. (2005). Data mining for case-based reasoning in high-dimensional biological domains. IEEE transactions on knowledge and data engineering. 17(8), 1127-1137. | zh_TW |
dc.relation.reference (參考文獻) | 8. Bansal, K., Vadhavkar, S. and Gupta, A. (1998). Neural Networks Based Data Mining Applications for Medical Inventory Problems. International Journal of Agile Manufacturing, 1(2), 187-200. | zh_TW |
dc.relation.reference (參考文獻) | 9. Berry, M. J. A. and Linoff G. (1997). Data mining techniques: for marketing, sales, and customer support. John Wiley & Sons Press. | zh_TW |
dc.relation.reference (參考文獻) | 10. Bose, R. (2006). Intelligent technologies for managing fraud and identify Theft. Proceedings of the Third International Conference on Information Technology: New Generation. 446-451. | zh_TW |
dc.relation.reference (參考文獻) | 11. Bose, R. (2002). Customer relationship management: key components for IT success. Industrial Management & Data Systems. 102(2), 89-97. | zh_TW |
dc.relation.reference (參考文獻) | 12. Brachman, R. J., Khabasa, T., Kloesgen, W., Piatetsky-Shapiro, G., and Simoudis, E. (1996). Mining business database. Communication of ACM. 39(11), 42-48. | zh_TW |
dc.relation.reference (參考文獻) | 13. Brause, R., Langsdorf, T. and Hepp, M. (1999). Neural Data Mining for Credit Card Fraud Detection. Proceedings of the 11th IEEE International Conference on Tools with Artificial Intelligence, Chicago. 103-106 | zh_TW |
dc.relation.reference (參考文獻) | 14. Chan, P. K., Fan, W., Prodromidis, A. L. and Stolfo, S.J. (1999). Distributed data mining in credit card fraud detection. Intelligent Systems and Their Applications. 14(6), 67-74 | zh_TW |
dc.relation.reference (參考文獻) | 15. Chaudhuri, S. and Dayal, U. (1997, March). An overview of data warehousing and OLAP technology. ACM SIGMOD Record. 26(1), 65 – 74. | zh_TW |
dc.relation.reference (參考文獻) | 16. Chen, M. S., Han, J. and Yu, P. S. (1996). Data mining: an overview from database perspective. IEEE Transactions on Knowledge and Data Engineering. 8(6), 866-883 | zh_TW |
dc.relation.reference (參考文獻) | 17. Chen, R. S., Wu, R. C. and Chen J. Y. (2005) Data mining application in customer relationship management of credit card business. Proceedings of the 29th Annual International Computer Software and Applications Conference (COMPSAC’05). 2, 39-40. | zh_TW |
dc.relation.reference (參考文獻) | 18. Chen, Y. and Hu, L. (2005). Study on data mining application in CRM system based on insurance trade. Proceedings of the 7th international conference on electronic commerce, Xi`an, China. 839-841. | zh_TW |
dc.relation.reference (參考文獻) | 19. Davidson, A. and Simonetto, M., (2005). Pricing strategy and execution: an overlooked way to increase revenues and profits. STRATEGY & LEADERSHIP. 33(6), 25-33. | zh_TW |
dc.relation.reference (參考文獻) | 20. Emili, T. A., (2004). Cost Efficiency and Product Mix Clusters across the Spanish Banking Industry. Review of Industrial Organization. 20, 163-181. | zh_TW |
dc.relation.reference (參考文獻) | 21. Farquhar, J. D. (2004). Customer retention in retail, financial services: an employee perspective. The International Journal of Bank Marketing. 22(2), 86-99. | zh_TW |
dc.relation.reference (參考文獻) | 22. Fayyad, U., Piatetsky-Shapiro, G. and Smyth, P. (1996). The KDD process for extracting useful knowledge from volumes of data. COMMUNICATIONS OF THE ACM. 39(11), 27-34 | zh_TW |
dc.relation.reference (參考文獻) | 23. Fayyad, U., Piatetsky-Shapiro, G., Smyth, P., and Uthurusamy, R. (1996). Advances in knowledge discovery and data dining. Cambridge: AAAI/MIT Press. | zh_TW |
dc.relation.reference (參考文獻) | 24. Ferdousi, Z. and Maeda, A. (2006). Unsupervised outlier detection in time series data. Proceedings of the 22nd International Conference on Data Engineering Workshops (ICDEW`06). 51-56. | zh_TW |
dc.relation.reference (參考文獻) | 25. Fish, K. E. and Segall, R. S. (2004) A visual analysis of learning rule effects and variable importance for neural networks in data mining operations. Kybernetes. 33(7), 1127-1142 | zh_TW |
dc.relation.reference (參考文獻) | 26. Forcht, K. A. and Cochran, K. (1999). Using data mining and datawarehousing techniques. Industrial Management & Data Systems. 99(5), 18-19. | zh_TW |
dc.relation.reference (參考文獻) | 27. Gardner, M. and Bieker, J. (2000). Data mining solves tough semiconductor manufacturing problems. Conference on Knowledge Discovery in Data, Boston. ACM Press, 376 – 383. | zh_TW |
dc.relation.reference (參考文獻) | 28. Gargano, M. L. and Raggad, B. G. (1999). Data mining – a powerful information creating tool. OCLC Systems & Services. 15(2), 81-90. | zh_TW |
dc.relation.reference (參考文獻) | 29. Gavrilov, M., Anguelov, D., Indyk, P. and Motwani, R. (2000). Mining The Stock Market: Which Measure Is Best ?. Conference on Knowledge Discovery in Data, Boston, MA USA. 487-496. | zh_TW |
dc.relation.reference (參考文獻) | 30. Goebel, M. and Gruenwald, L. (1999). A survey of data mining and knowledge discovery software tools. ACM SIGKDD Explorations Newsletter. 1(1), 20-33. | zh_TW |
dc.relation.reference (參考文獻) | 31. Han, J. and Kamber, M. (2001). Data mining: concepts and techniques. Academic Press. | zh_TW |
dc.relation.reference (參考文獻) | 32. Lee, S. J. and Siau, K. (2001). A review of data mining techniques. Industrial Management & Data Systems. 101(1), 41-46. | zh_TW |
dc.relation.reference (參考文獻) | 33. Lee, T. S., Chiu C. C., Chou, Y. C. and Lu, C. J. (2006). Mining the customer credit using classification and regression tree and multivariate adaptive regression splines. Computational Statistics & Data Analysis. 50, 1113-1130. | zh_TW |
dc.relation.reference (參考文獻) | 34. Lejeune, M. A. P. M. (2001). Measuring the impact of data mining on churn management. Internet Research: Electronic Networking Applications and Policy. 11(5), 375-387. | zh_TW |
dc.relation.reference (參考文獻) | 35. Lim, T. S., Loh, W. Y., and Shih, Y. S. (2000). A Comparison of Prediction Accuracy, Complexity, and Training Time of Thirty-Three Old and New Classification Algorithms. Machine Learning. 40, 203-228. | zh_TW |
dc.relation.reference (參考文獻) | 36. Lu, H. J., Feng, L., and Han, J. (2000). Beyond intratransaction association analysis- mining multidimensional intertransaction association rules. ACM Transactions of Information Systems. 18(4), 423-454. | zh_TW |
dc.relation.reference (參考文獻) | 37. Lu, H. J., Han, J., and Feng, L. (1998). Stock movement prediction and N-dimensional inter-transaction association rules. ACM SIGMOD Workshop on Research Issues on Data Mining and Knowledge Discovery, Seattle. 12.1-12.7. | zh_TW |
dc.relation.reference (參考文獻) | 38. Mannila, H. (2000). Theoretical Frameworks for Data Mining. ACM SIGKDD Explorations Newsletter. 1(1), 30-32. | zh_TW |
dc.relation.reference (參考文獻) | 39. Min, Hokey, Min, Hyesung, and Emam, Agmed. (2002). A data mining approach to developing the profiles of hotel customers. International Journal of contemporary Hospitality Management. 14(6), 274-285. | zh_TW |
dc.relation.reference (參考文獻) | 40. Netessine S., Savin, S., and Xiao w. (2004) Revenue Management through Dynamic Cross-Selling in E-commerce Retailing. Working paper. | zh_TW |
dc.relation.reference (參考文獻) | 41. Piatetsky-Shapiro, G. and Frawley W. J. (1991). Knowledge discovery in databases. AAAI/MIT Press. | zh_TW |
dc.relation.reference (參考文獻) | 42. Pitta, D., A. (1998). Marketing one-to-one and its dependence on knowledge discovery in databases. Journal of Consumer Marketing. 15(5), 468-480. | zh_TW |
dc.relation.reference (參考文獻) | 43. Pritscher, L. and Feyen, L (2001). Data Mining And Strategic Marketing In The Airline Industry. Data Mning FOR Marketing Applications. | zh_TW |
dc.relation.reference (參考文獻) | 44. Povinelli, R. J. and Feng. X. (1999). Data mining of multiple nonstationary time series. Proceedings of Artificial Neural Networks in Engineering. St. Louis, Missouri, 511-516. | zh_TW |
dc.relation.reference (參考文獻) | 45. Silberschatz, A., Stonebraker, M., and Ullman, J. (1995). Database research: Achievements and opportunities into the 21st century. SIGMOD Record. 25(1), 52-63. | zh_TW |
dc.relation.reference (參考文獻) | 46. Spangler, W. E., Gal-Or, M., and May J. H. (2003). Using data mining to profile TV viewers. Communication of ACM. 46(12), 67-72. | zh_TW |
dc.relation.reference (參考文獻) | 47. Vellido, A., Lisboa, P. J. G. and Vaughan, J. (1999). Neural network in business: a survey of applications (1992-1998). Expert Systems with Applications. 17, 51-70. | zh_TW |
dc.relation.reference (參考文獻) | 48. West, D. (2000). Neural network credit scoring models. Computers & Operations Research. 27, 1131-1152. | zh_TW |
dc.relation.reference (參考文獻) | 49. William, E. S., Mordechai, G. O. and Jerrold, H. M. (2003). Using data mining to profile TV viewers. Communication of the ACM. 46(12), 67-72. | zh_TW |
dc.relation.reference (參考文獻) | 50. 洪順慶(2001)。行銷管理。第二版。台北,新陸書局。 | zh_TW |