dc.contributor.advisor | 管郁君<br>諶家蘭 | zh_TW |
dc.contributor.advisor | Huang, E.Y.<br>Seng, J.L. | en_US |
dc.contributor.author (作者) | 柯怡芬 | zh_TW |
dc.contributor.author (作者) | Ke, I Fen | en_US |
dc.creator (作者) | 柯怡芬 | zh_TW |
dc.creator (作者) | Ke, I Fen | en_US |
dc.date (日期) | 2006 | en_US |
dc.date.accessioned | 18-九月-2009 14:31:59 (UTC+8) | - |
dc.date.available | 18-九月-2009 14:31:59 (UTC+8) | - |
dc.date.issued (上傳時間) | 18-九月-2009 14:31:59 (UTC+8) | - |
dc.identifier (其他 識別碼) | G0094356017 | en_US |
dc.identifier.uri (URI) | https://nccur.lib.nccu.edu.tw/handle/140.119/35243 | - |
dc.description (描述) | 碩士 | zh_TW |
dc.description (描述) | 國立政治大學 | zh_TW |
dc.description (描述) | 資訊管理研究所 | zh_TW |
dc.description (描述) | 94356017 | zh_TW |
dc.description (描述) | 95 | zh_TW |
dc.description.abstract (摘要) | 網際網路搜尋是很重要的工具,可用以蒐集或尋找資訊。然而搜尋結果有時無法完全符合使用者的原意,所以網際網路搜尋引擎公司致力於發展更好的搜尋演算法,是為了增進搜尋結果的準確性並提高使用者對搜尋引擎的使用率,我們從探討的文獻中發現目前並沒有一個較彈性、開放的工具來評量網路搜尋的效能。本研究的目的就是希望能發展出一個較具彈性的負載量模型以針對網路搜尋進行效能評量。本研究著重在效能評量的負載量模型及測試套組的設計,我們希望透過以學名結構為基礎的方法擴展負載量模型的彈性,我們蒐集及研討幾個具代表性的網路搜尋演算法,並找出這些主要演算法的學名結構,以這些學名結構為基礎進行負載量模型的設計,負載量模型包含網頁模型、查詢模型與控制模型。最後,我們利用雛形實作來驗證本研究所提出的研究方法。 | zh_TW |
dc.description.abstract (摘要) | Web search service is a vital way to find information on the web. However, not every piece of information found is relevant or useful. In order to improve search accuracy, most designers of the web search engines devote to working on search algorithms development and optimization. From literature, we realize that there are few open or flexible performance evaluation methods for web search service. The objective of this research is to develop a more flexible workload model based on generic construct for web search benchmarking and build an automated benchmarking environment of performance evaluation. Generic constructs are major components which can represent the web search algorithm. We collect and review literature related to web search algorithms and benchmarking. And we identify the generic constructs of key web search algorithms. The workload model consists of a page model, query model and control model. The page model describes the web page structure in web search. The query model defines some important criteria to query the web search engines. The control model defines the variables that used to set up the benchmark environment. Finally, we validate the research model through the prototype implementation. | en_US |
dc.description.tableofcontents | ABSTRACT I中文摘要 II誌謝 IIITABLE OF CONTENTS IVLIST OF FIGURES VILIST OF TABLES VIIICHAPTER 1 INTRODUCTION 11.1 Research Motivation 11.2 Research Problem 11.3 Research Objective 21.4 Research Limitation 21.5 Research Flow 21.5 Organization of Thesis 3CHAPTER 2 LITERATURE REVIEW 52.1 Link Structure 52.2 PageRank 52.2 HITS ("hypertext induced topic selection") 82.3 Improvement of HITS 122.4 TREC Web Track 202.5 Summary 22CHAPTER 3 RESEARCH MODEL 263.1 Research Structure 263.2 Components of Research Model 283.3 Page Model 283.4 Query Model 303.5 Control Model 333.6 Performance Metrics 33CHAPTER 4 PROTOTYPE SYSTEM DEVELOPMENT 354.1 Prototype Development Tool 354.2 Prototype System Implementation 39CHAPTER 5 RESEARCH EXPERIMENT 445.1 Experimental Design 445.2 Experimental Execution and Results 505.3 Summary 74CHAPTER 6 RESEARCH IMPLICATIONS AND CONCLUSIONS 756.1 Research Implications 756.2 Conclusions 776.3 Future Research Work 77REFERENCES 79 List of FiguresFIGURE 1.1: RESEARCH FLOW 3FIGURE 2.1: LINK STRUCTURE 5FIGURE 2.2: ILLUSTRATION OF PAGERANK ALGORITHM 6FIGURE 2.3: EXAMPLE OF PAGERANK 7FIGURE 2.4: THE RELATIONSHIP BETWEEN HUBS AND AUTHORITIES 9FIGURE 2.5: AUTHORITY WEIGHT P = HUB WEIGHT Q1 + HUB WEIGHT Q2+HUB WEIGHT Q3 10FIGURE 2.6: HUB WEIGHT P=AUTHORITY WEIGHT Q1+AUTHORITY WEIGHT Q2+AUTHORITY WEIGHT Q3 11FIGURE 2.7: AUTHORITY WEIGHT OF P = HUB WEIGHT OF Q1 *1/3+HUB WEIGHT OF Q2*1/3+HUB WEIGHT OF Q3*1/3 13FIGURE 2.8: HUB WEIGHT OF P =AUTHORITY WEIGHT OF Q1*1/3+AUTHORITY WEIGHT OF Q2*1/3+AUTHORITY WEIGHT OF Q3*1/3 13FIGURE 3.1: RESEARCH STRUCTURE 27FIGURE 3.2: THE PAGE MODEL HIERARCHY 29FIGURE 3.3: THE QUERY MODEL HIERARCHY 31FIGURE 4.2: THE MAIN MENU OF WORKLOAD MODEL 39FIGURE 4.3: PAGE MODEL SELECTION AND QUERY MODEL SELECTION 41FIGURE 4.4: QUERY SCRIPT OUTPUT OF THE WORKLOAD MODEL 42FIGURE 4.5: CONTROL MODEL INPUT OF SCHEDULER 43FIGURE 4.6: THE OUTPUT OF RESULT COLLECTOR 43FIGURE 5.1: SELECTED INPUT FORTEST1 51FIGURE 5.2: SCRIPT OUTPUT OF TEST1 51FIGURE 5.3: THE SEARCH RESULTS OF TEST1 52FIGURE 5.4: THE SEARCH RESULTS OF TEST1 BY GOOGLE 52FIGURE 5.5: SELECTED INPUT FOR TEST2 54FIGURE 5.6: SCRIPT OUTPUT OF TEST2 54FIGURE 5.7: THE SEARCH RESULTS OF TEST2 55FIGURE 5.8: THE SEARCH RESULTS OF TEST2 BY GOOGLE 55FIGURE 5.9: SELECTED INPUT FOR TEST3 57FIGURE 5.10: SCRIPT OUTPUT OF TEST3 57FIGURE 5.11: THE SEARCH RESULTS OF TEST3 58FIGURE 5.12: THE SEARCH RESULTS OF TEST3 BY GOOGLE 58FIGURE 5.13: SELECTED INPUT FOR TEST4 60FIGURE 5.14 SCRIPT OUTPUT OF TEST4 60FIGURE 5.15: THE SEARCH RESULTS OF TEST4 61FIGURE 5.16: SELECTED INPUT FOR TEST5 62FIGURE 5.17: SCRIPT OUTPUT OF TEST5 62FIGURE 5.18: THE SEARCH RESULTS OF TEST5 63FIGURE 5.19: SELECTED INPUT FOR TEST6 64FIGURE 5.20: SCRIPT OUTPUT OF TEST6 64FIGURE 5.21: THE SEARCH RESULTS OF TEST6 65FIGURE 5.22: SELECTED INPUT FOR TEST7 66FIGURE 5.23: SCRIPT OUTPUT OF TEST7 66FIGURE 5.24: THE SEARCH RESULTS OF TEST7 67FIGURE 5.25: SELECTED INPUT FOR TEST8 68FIGURE 5.26: SCRIPT OUTPUT OF TEST8 68FIGURE 5.27: THE SEARCH RESULTS OF TEST8 69FIGURE 5.28: SELECTED INPUT FOR TEST9 70FIGURE 5.29: SCRIPT OUTPUT OF TEST9 70FIGURE 5.30: THE SEARCH RESULTS OF TEST9 71FIGURE 5.31: SELECTED INPUT FOR TEST10 72FIGURE 5.32: SCRIPT OUTPUT OF TEST10 72FIGURE 5.33: THE SEARCH RESULTS OF TEST10 73 List of TablesTABLE 2.1: PAGERANK OF PAGE A, B, C IN EACH ITERATION 7TABLE 2.2: GENERIC CONSTRUCTS OF PAGERANK 8TABLE 2.3: GENERIC CONSTRUCTS OF HITS 12TABLE 2.4: GENERIC CONSTRUCTS OF BHITS AND WBHITS 14TABLE 2.5: GENERIC CONSTRUCTS OF HITS BASED-VSM 16TABLE 2.6: GENERIC CONSTRUCTS OF HITS BASED-OKAPI 18TABLE 2.7: GENERIC CONSTRUCTS OF HITS BASED-CDR 19TABLE 2.8: GENERIC CONSTRUCTS OF HITS BASED-TLS 19TABLE 2.9: SUMMARY OF ALGORITHMS 22TABLE 2.10: GENERIC CONSTRUCTS OF ALGORITHMS 24TABLE 2.11: OPERATIONS OF GENERIC CONSTRUCTS OF ALGORITHMS 24TABLE 2.12: GENERIC CONSTRUCTS OF MSRA AT WEB TRACK OF TREC 2003 AND 2004 24TABLE 2.13: OPERATIONS OF GENERIC CONSTRUCTS OF MSRA AT WEB TRACK OF TREC 2003 AND 2004 25TABLE 3.1: THE MAPPING OF GENERIC CONSTRUCTS AND WORKLOAD MODEL 28TABLE 3.2: THE MAPPING OF OPERATIONS OF GENERIC CONSTRUCTS AND WORKLOAD MODEL 28TABLE 3.3: EXAMPLES OF THREE CATEGORIES 30TABLE 4.1: THE DESCRIPTION OF PROTOTYPE DEVELOPMENT TOOL 35TABLE 4.2: THE REQUEST METHOD AND URL OF WEB SEARCH SERVICES 35TABLE 4.3: THE REQUEST PARAMETERS OF WEB SEARCH SERVICES 36TABLE 5.1: THE TEST SPECIFICATIONS OF SINGLE PAGE-URL 44TABLE 5.2: THE TEST SPECIFICATIONS OF SINGLE PAGE-FONT SIZE, FONT COLOR, FRAME, META AND TABLE 45TABLE 5.3: THE TEST SPECIFICATIONS OF SINGLE PAGE-TITLE 45TABLE 5.4: THE TEST SPECIFICATIONS OF MULTI PAGE-COMPANY 46TABLE 5.5: THE TEST SPECIFICATIONS OF QUERY TYPE- HOMEPAGE FINDING 46TABLE 5.6: THE TEST SPECIFICATIONS OF QUERY TYPE- NAMED PAGE FINDING 47TABLE 5.7: THE TEST SPECIFICATIONS OF QUERY TYPE-TOPIC DISTILLATION 47TABLE 5.8: THE TEST SPECIFICATIONS OF LINK STRUCTURE-AUTHORITY-HUB 47TABLE 5.9: THE TEST SPECIFICATIONS OF SIMILARITY- TLS 48TABLE 5.10: THE TEST SPECIFICATIONS OF SYNONYM 48TABLE 5.11: EXPERIMENTAL METRIC 49TABLE 5.12: EXPERIMENTAL METRICS OF TEST1 53TABLE 5.13: EXPERIMENTAL METRICS OF TEST1 BY GOOGLE 53TABLE 5.14: EXPERIMENTAL METRICS OF TEST2 56TABLE 5.15: EXPERIMENTAL METRICS OF TEST2 BY GOOGLE 56TABLE 5.16: EXPERIMENTAL METRICS OF TEST3 59TABLE 5.17: EXPERIMENTAL METRICS OF TEST3 BY GOOGLE 59TABLE 5.18: EXPERIMENTAL METRICS OF TEST4 61TABLE 5.19: EXPERIMENTAL METRICS OF TEST5 63TABLE 5.20: EXPERIMENTAL METRICS OF TEST6 65TABLE 5.21: EXPERIMENTAL METRICS OF TEST7 67TABLE 5.22: EXPERIMENTAL METRICS OF TEST8 69TABLE 5.23: EXPERIMENTAL METRICS OF TEST9 71TABLE 5.24: EXPERIMENTAL METRICS OF TEST10 73 | zh_TW |
dc.format.extent | 136690 bytes | - |
dc.format.extent | 143488 bytes | - |
dc.format.extent | 134776 bytes | - |
dc.format.extent | 132645 bytes | - |
dc.format.extent | 72585 bytes | - |
dc.format.extent | 192941 bytes | - |
dc.format.extent | 113611 bytes | - |
dc.format.extent | 194035 bytes | - |
dc.format.extent | 1329604 bytes | - |
dc.format.extent | 79294 bytes | - |
dc.format.extent | 90250 bytes | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | en_US | - |
dc.source.uri (資料來源) | http://thesis.lib.nccu.edu.tw/record/#G0094356017 | en_US |
dc.subject (關鍵詞) | 網路搜尋 | zh_TW |
dc.subject (關鍵詞) | 績效評估 | zh_TW |
dc.subject (關鍵詞) | 負載量模型 | zh_TW |
dc.subject (關鍵詞) | 學名結構 | zh_TW |
dc.subject (關鍵詞) | web search | en_US |
dc.subject (關鍵詞) | benchmark | en_US |
dc.subject (關鍵詞) | workload model | en_US |
dc.subject (關鍵詞) | generic construct | en_US |
dc.subject (關鍵詞) | performance | en_US |
dc.subject (關鍵詞) | evaluation | en_US |
dc.title (題名) | 以學名結構為基礎之網路搜尋負載量模型設計 | zh_TW |
dc.title (題名) | A Generic Construct based Workload Model for Web Search | en_US |
dc.type (資料類型) | thesis | en |
dc.relation.reference (參考文獻) | [1]. Bharat, K., & Henzinger, M. R. (1998). Improved algorithms for topic distillation in a hyperlinked environment. SIGIR `98: Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Melbourne, Australia. 104-111. from http://doi.acm.org/10.1145/290941.290972 | zh_TW |
dc.relation.reference (參考文獻) | [2]. Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual web search engine. [Electronic version]. Computer Networks & ISDN Systems, 30, 107-118. | zh_TW |
dc.relation.reference (參考文獻) | [3]. Can, F., Nuray, R., & Sevdik, A. B. (2004). Automatic performance evaluation of web search engines. [Electronic version]. Information Processing and Management, 40(3, May, 2004), 495-514. | zh_TW |
dc.relation.reference (參考文獻) | [4]. Chidlovskii, B., Roustant, B., & Brette, M. (2006). Documentum ECI self-repairing wrappers: Performance analysis. SIGMOD `06: Proceedings of the 2006 ACM SIGMOD International Conference on Management of Data, Chicago, IL, USA. 708-717. from http://doi.acm.org/10.1145/1142473.1142555 | zh_TW |
dc.relation.reference (參考文獻) | [5]. C. J., van Rijsbergen. Information retrieval (online book)., 2006 from http://www.dcs.gla.ac.uk/Keith/Preface.html | zh_TW |
dc.relation.reference (參考文獻) | [6]. Clarke, S., & Willett, P. (1997). Estimating the recall performance of search engines. ASLIB Proceedings, 49 (7), 184-189. | zh_TW |
dc.relation.reference (參考文獻) | [7]. David, H., Nick, C., Peter, B., & Kathleen, G. (2001). Measuring search engine quality. [Electronic version]. Information Retrieval, 4(1), 33-33. | zh_TW |
dc.relation.reference (參考文獻) | [8]. Hastie, T., Tibshirani, R., & Friedman, J. H. (2001). The elements of statistical learning : Data mining, inference, and prediction | zh_TW |
dc.relation.reference (參考文獻) | [9]. Jansen, B. J., & Spink, A. (2006). How are we searching the world wide web? A comparison of nine search engine transaction logs. [Electronic version]. Information Processing and Management, 1, January, 2006(42), 248-263. | zh_TW |
dc.relation.reference (參考文獻) | [10]. Ji-Rong , W., Ruihua, S., Deng, C., Kaihua, Z., Sphipeng, Y., & Shaozhi, Y., et al. (2003). MICROSOFT RESERACH ASIA AT THE WEB TRACK OF TREC 2003. Paper presented at the Text Retrieval Conference 2003, 408-408. | zh_TW |
dc.relation.reference (參考文獻) | [11]. Kleinberg, J. M. (1999). Authoritative sources in a hyperlinked environment. J.ACM, 46(5), 604-632. | zh_TW |
dc.relation.reference (參考文獻) | [12]. Kraaij, W., Westerveld, T., & Hiemstra, D. (2002). The importance of prior probabilities for entry page search. SIGIR `02: Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Tampere, Finland. 27-34. from http://doi.acm.org/10.1145/564376.564383 | zh_TW |
dc.relation.reference (參考文獻) | [13]. Lawrence, P., Sergey, B., Rajeev, M., & Terry, W. (1998). The PageRank citation ranking: Bringing order to the web, Stanford Digital Libraries Working Paper. | zh_TW |
dc.relation.reference (參考文獻) | [14]. Li, L., Shang, Y., & Zhang, W. (2002). Improvement of HITS-based algorithms on web documents. WWW `02: Proceedings of the 11th International Conference on World Wide Web, Honolulu, Hawaii, USA. 527-535. from http://doi.acm.org/10.1145/511446.511514 | zh_TW |
dc.relation.reference (參考文獻) | [15]. Nick, C., & David , H. (2004). Overview of the TREC-2004 web track. Paper presented at the Text Retrieval Conference 2004. | zh_TW |
dc.relation.reference (參考文獻) | [16]. Pant, G. (2003). Deriving link-context from HTML tag tree. DMKD `03: Proceedings of the 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, San Diego, California. 49-55. from http://doi.acm.org/10.1145/882082.882094 | zh_TW |
dc.relation.reference (參考文獻) | [17]. Qin, T., Liu, T., Zhang, X., Feng, G., Wang, D., & Ma, W. (2007). Topic distillation via sub-site retrieval. [Electronic version]. Information Processing and Management, 43(2, March, 2007), 445-460. | zh_TW |
dc.relation.reference (參考文獻) | [18]. Richard, J. Measuring search effectiveness., 2006, from http://www.hsl.creighton.edu/hsl/Searching/Recall-Precision.html | zh_TW |
dc.relation.reference (參考文獻) | [19]. S E , R., & S, W. (1999). Okapi/Keenbow at TREC-8. Paper presented at the The Eighth Text Retrieval Conference (TREC 8), 151-162. | zh_TW |
dc.relation.reference (參考文獻) | [20]. S E, R., & K , S. J. (1976). Relevance weighting of search terms. [Electronic version]. Journal of the American Society for Information Science, 27(May-June), 129-146. | zh_TW |
dc.relation.reference (參考文獻) | [21]. Scarpa, M., Puliafito, A., Villari, M., & Zaia, A. (2004). A modeling technique for the performance analysis of web searching applications. IEEE Transactions on Knowledge and Data Engineering, 16(11), 1339-1356. | zh_TW |
dc.relation.reference (參考文獻) | [22]. Shafi, S. M., & Rather, R. A. (2005). "Precision and Recall of Five Search Engines for Retrieval of Scholarly Information in the Field of Biotechnology." Webology, 2 (2), Article 12. Available at: http://www.webology.ir/2005/v2n2/a12.html | zh_TW |
dc.relation.reference (參考文獻) | [23]. Stephen, R. (2002). Threshold setting and performance optimization | zh_TW |
dc.relation.reference (參考文獻) | in adaptive filtering. [Electronic version]. Information Retrieval, 5(2-3), 239-239. | zh_TW |
dc.relation.reference (參考文獻) | [24]. Vapnik, V. N. (1998). Statistical learning theory Willey. | zh_TW |
dc.relation.reference (參考文獻) | [25]. Vaughan, L. (2004). New measurements for search engine evaluation proposed and tested. [Electronic version]. Information Processing and Management, 40(4, July, 2004), 677-691. | zh_TW |
dc.identifier.doi (DOI) | 10.1016/j.ipm.2009.04.004 | en_US |
dc.doi.uri (DOI) | http://dx.doi.org/10.1016/j.ipm.2009.04.004 | en_US |