Publications-Theses

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 多層次結構方程式模型在大型資料庫上的應用
Applying Multilevel Structural Equation Modeling to a Large-Scale Database
作者 李仁豪
Li,Ren Hau
貢獻者 余民寧
Yu,Min Ning
李仁豪
Li,Ren Hau
關鍵詞 多層次結構方程式模型
層級二樣本點數目
多群組多層次結構方程式模型
multilevel structural equation modeling
number of level-2 units
multiple group multilevel structural equation modeling
MUML
日期 2006
上傳時間 18-Sep-2009 18:20:41 (UTC+8)
摘要 本研究的主要目的是藉由實徵的PISA資料庫資料將多層次結構方程式模型的方法學介紹到台灣的教育領域。多層次結構方程式模型適合應用在大型且具階層或巢狀結構的資料,可以解決因群集性抽樣設計所導致的樣本點相依的問題。
      本研究中包含三個小研究。在研究一中,實徵的資料經由多層次結構方程式模型步驟化的分析,並與傳統的結構方程式模型的分析結果相互比較。一共有五個構念及其測量指標從PISA 2003資料庫中被選取來建構多層次結構方程式模型。樣本包含948個學校共26,884位15歲來自加拿大的學生。研究結果顯示某些結構係數的正負向關係在組內層次與組間層次是十分不同的,這也彰顯出多層次結構方程式模型與傳統結構方程式模型比較下的價值。研究一的發現指出,在數學興趣與數學工具性動機控制的條件下,教師的支持對學生的數學成績及數學自我效能在組間層次並無效果,但教師的支持對學生的數學自我效能在組內層次具有正向顯著的效果。此外,除了在組間層次上數學興趣對數學成績有顯著的負向效果以及數學工具性動機對數學自我效能沒有顯著效果外,數學興趣與數學工具性動機對數學成績及數學自我效能具有顯著的正向效果。另外,數學成績對數學自我效能具有很大的效果,特別是在組間層次。
      在研究二中,藉由評估跨越不同層級二樣本大小(即120、240、360、480、600、720、840、948個學校)時的模式適配度及參數估計值的穩定性,來決定一個最小較佳的層級二樣本數相對於層級二估計參數數目的比值。研究結果顯示,該比值大約至少8:1是較可以被接受的結果。在研究三中,藉由多群組多層次結構方程式模型進行跨國家的比較。根據研究二的較佳最小比例以及亞洲國家在PISA 2003資料庫中有限的層級二樣本數,一個將焦點集中在數學興趣對數學成績的不同層次預測關係之新多層次結構方程式模型被提出。由再次隨機取樣的加拿大145所學校作為西方國家的代表樣本,而由只有143所學校的日本樣本作為東方國家的代表。研究結果顯示,跨越加拿大與日本樣本,在任一層級中出現十分不同的預測效果。數學興趣對數學成績的預測效果在加拿大樣本中的兩層級皆是正向地顯著,但在日本樣本中卻都是負向地顯著。這意謂著未來某些重要的教育及心理學變項之間關係的跨國研究應該在被重視。
The main purpose of this research was to introduce multilevel structural equation modeling methodology to Taiwan education field by applying empirical example from PISA 2003 database. Multilevel structural equation modeling was suitable to be applied to the large-scale and hierarchical or nested data structure. It could solve the problem of dependency among sample units resulted from clustered sampling design.
     There were three studies in the research. In study one, the empirical data dealt with multilevel structural equation modeling analysis was undertaken step by step and compared with conventional structural equation modeling analysis. There were five constructs and their measurement indicators from PISA 2003 database mapped to form the multilevel structural equation model. The sample was 948 schools with 26884 15-year-old students from Canada. The result showed the valences of some structural coefficients were quite different in between-level and within-level structural equation models, which characterisized the value of multilevel structural equation modeling when compared with the outcomes from conventional structural equation modeling analysis. The findings of study one indicated that teacher support had no effect on students’ mathematics grades and mathematics self-efficacy in between-level part but had a significant positive effect on mathematics self-efficacy in within-level part when both interest in mathematics and instrumental motivation to mathematics grades were considered in the model. Besides, interest in mathematics and instrumental motivation had positive effects on mathematics grades and mathematics self-efficacy except for negative effect from interest in mathematics to mathematics grades and no effect from instrumental motivation to mathematics self-efficacy in between-level part. In addition, mathematics grades had great influences on mathematics self-efficacy, especially in between-level part.
     In study two, a better minimum ratio of the number of level-2 units relative to the number of parameter estimates in between-level part was searched by evaluating the model-fit and stability of parameter estimates across several Canada samples with 120, 240, 360, 480, 600, 720 ,840, and 948 schools. The result showed that the ratio at least about 8:1 was appreciated. In study three, cross-national comparisons were processed by multiple group multilevel structural equation modeling. Based on the better minimum ratio from study two and limited level-2 sample sizes from Asian countries in PISA 2003, a new multilevel structural equation model was proposed focusing on the structural coefficient of mathematics grades regressed on interest in mathematics in each level. A random resampling Canada sample with 145 schools was served as the representative of the West nations and the Japan sample with only 143 schools was on behalf of the East nations. The result showed that quite different predictive effect in either level across the Canada sample and the Japan sample. The predictive effects of the interest in mathematics to mathematics grades were positively significant in the Canada sample in each level but were negatively significant in the Japan sample in each level, which implied that cross-national studies in some important relationships among educational and psychological variables should be emphasized in the future.
參考文獻 Aitkin, M. A., & Longford, N. (1986). Statistical modelling in school effectiveness studies (with discussion). Journal of the Royal Statistical Society, Series A, 149, 1-43.
Amabile, T. M., Hill, K. G., Hennessey, B. A., & Tighe, E. M. (1994). The work preference inventory: Assessing intrinsic and extrinsic motivational orientations. Journal of Personality and Social Psychology, 66, 950-967.
Bandura, A. (1997). Self-efficacy: The exercise of control. New York: Freeman.
Bentler, P. M. (1988). Comparative fit indexes in structural models. Psychological Bulletin, 107, 238-246.
Bentler, P. M. (1992). On the fit of models to covariances and methodology to the Bulletin. Psychological Bulletin, 112, 400-404.
Bentler, P. M., & Liang, J. (2003). Two-level mean and covariance structures: Maximum likelihood via an EM algorithm. In S. P. Reise & N. Duan (Eds.), Multilevel modeling: Methodological advances, issues, and applications (pp. 53-70). Mahwah, NJ: Lawrence Erlbaum Associates.
Bliese, P. D., & Halverson, R. R. (1998). Group size and measures of group-level properties: An examination of eta-squared and ICC values. Journal of Management, 24(2), 157-172.
Bliese, P. D. (2000). Within-group agreement, non-independence, and reliability: Implications for data aggregation and analysis. In K. J. Klein & S. W. J. Kozlowski (Eds.), Multilevel theory, research, and methods in organizations: Foundations, Extensions, and new directions. San Francisco: Jossey-Bass.
Bock, R. D. (1989). Multilevel analysis of educational data. San Diego, CA: Academic Press.
Boomsma, A. (1983). On the robustness of LISREL (maximum likelihood estimation) against small sample size and nonnormality. Unpublished doctoral dissertation, University of Groningen.
Brophy, J. (1987). Socializing students’ motivation to learn. In M. L. Maehr & D. A. Kleiber (Eds.), Advances in motivation and achievement (Vol. 5, pp. 181-210). Greenwich, CT: JAI Press.
Pekrun, R. (2000). A social-cognitive, control-value theory of achievement emotions. In J. Heckhausen (Ed.), Motivational psychology of human development (pp. 143-163). Oxford, England: Elsevier.
Pekrun, R., Goetz, T., Titz, W., & Perry, R. P. (2002). Academic emotions in students’ self-regulated learning and achievement: A program of qualitative and quantitative research. Educational Psychologist, 37(2), 91-105.
Pintrich, P. R. & Schunk, D. H. (1996). Motivation in education: Theory, research, and applications. Englewood Cliffs, NJ: Merrill/Prentice Hall.
Raudenbush, S. W. (1995). Maximum likelihood estimation for unbalanced multilevel covariance structure models via the EM algorithm. British Journal of Mathematical and Statistical Psychology, 48, 359-370.
Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models: Applications and data analysis methods (2nd ed.). Thousand Oaks, CA: Sage.
Raudenbush, S. W., Rowan, B., & Kang, S. J. (1991). A multilevel, multivariate model for studying school climate in secondary schools with estimation via the EM algorithm. Journal of Educational Statistics, 16, 295-330.
Raudenbush, S. W., & Sampson, R. (1999). Assessing direct and indirect effects in multilevel designs with latent variables. Sociological Methods & Research, 28(2), 123-153.
Robinson, W. S. (1950). Ecological correlations and the behaviour of individuals. American Sociology Review, 15, 351-357.
Rowe, K. J. (2003). Estimating interdependent effects among multilevel composite variables in psychosocial research: An example of the application of multilevel structural equation modeling. In S. P. Reise & N. Duan (Eds.), Multilevel modeling: Methodological advances, issues, and applications (pp. 255-284). Mahwah, NJ: Lawrence Erlbaum Associates.
Rowe, K. J., & Hill, P. W. (1998). Modeling educational effectiveness in classrooms: The use of multi-level structural equations to model students’ progress. Educational Research and Evaluation, 4(4), 307-347.
Brown, M. W., & Cudeck, R. (1993). Alternative ways of assessing model fit. In K. A. Bollen & J. S. Long (Eds.), Testing structural equation models (pp. 136-162). Newbury Park, CA: Sage.
Rowe, K. J., & Rowe, K. S. (1999). Investigating the relationship between students’ attentive-inattentive behaviors in the classroom and their literacy progress. International Journal of Education Research, 31(1-2), 1-137.
Schmidt, W. B. (1969). Covariance structure analysis of the multivariate random effects model. Unpublished doctoral dissertation, Department of Education, University of Chicago.
Schunk, D. H. & Pajares, F. (2002). The development of academic self-efficacy. In A. Wigfield & J. S. Eccles (Eds.), Development of achievement motivation (pp. 15-31). San Diego, CA: Academic Press.
Snijders, T. A. B., & Bosker, R. J. (1999). Multilevel analysis: An introduction to basic and advanced multilevel modeling. London: Sage.
Stevenson, H. W., Lee, S., Chen, C., Stigler, J. W., Hsu, C. C., & Kitamura, S. (1990). Contexts of achievement: A study of American, Chinese, and Japanese children. Monographs of the Society for Research in Child Development, 55, (Serial No. 221.).
Stipek, D. (2002). Good instruction is motivating. In A. Wigfield & J. S. Eccles (Eds.), Development of achievement motivation (pp. 309-332). San Diego, CA: Academic Press.
Tucker, L. R., & Lewis, C. (1973). The reliability coefficient for maximum likelihood factor analysis. Psychometrika, 38, 1-10.
Tanaka, J. S. (1987). “How big is big enough ?”: Sample size and goodness of fit in structural equation models with latent variables. Child Development, 58, 134-146.
Tate, R. L., & Wongbundhit, Y. (1983). Random versus nonrandom coefficient models for multilevel analysis. Journal of Educational Statistics, 8, 103-120.
Wiley, D. E., & Bock, R. D. (1967). Quasi-experimentation in educational settings: Comment. School Review, 75(4), 353-366.
Bryk, A. S., & Raudenbush, S. W. (1992). Hierarchical linear models: Applications and data analysis methods. Newbury Park, CA: Sage.
Bryk, A. S., Raudenbush, S. W., & Congdon, R. (1994). HLM: Hierarchical linear modeling with the HLM/2L and HLM/3L Programs. Chicago: Scientific Software International.
Burstein, L., Kim, K. S., & Delandshere, G. (1989). Multilevel investigations of systematically varying slopes: Issues, alternatives, and consequences. In R. D. Bock (Ed.), Multilevel analysis of educational data (pp. 233-276). New York: Academic Press.
Burstein, L., Linn, R. L., & Capell, F. J. (1978). Analyzing multilevel data in the presence of heterogeneous within-class regressions. Journal of Educational Statistics, 3(4), 347-383.
Byrne, B. M. (1998). Structural equation modeling with LISREL, PRELIS, and SIMPLIS: Basic concepts, applications, and programming. Mahwah, NJ: Lawrence Erlbaum Associates.
Caprara, G. V., Barbaranelli, C., Borgogni, L., & Steca, P. (2003). Efficacy beliefs as determinants of teachers’ job satisfaction. Journal of Educational Psychology, 95(4), 821-832.
Chan, D. (1998). Functional relations among constructs in the same content domain at different levels of analysis: A typology of composition models. Journal of Applied Psychology, 83(2), 234-246.
Cheung, M. W. L., & Au, K. (2005). Applications of multilevel structural equation modeling to cross-national research. Structural Equation Modeling, 12(4), 598-619.
Chiu, C., Hong, Y., & Dweck, C. S. (1997). Lay disposition and implicit theories of personality. Journal of Personality and Social Psychology, 73, 19-30.
Coleman, J. S., Campbell, E. O., Hobson, C. F., McPartland, J., Mood, A. M., Weifeld, F. D., & York, R. L. (1966). Equality of education opportunity. Washington, DC: U. S. Department of Health, Education and Welfare, Office of Education, U. S. Government Printing Office.
Connell, J. P., & Wellborn, J. G. (1991). Competence, autonomy, and relatedness: A motivational analysis of self-system processes. In M. R. Gunnar & L. A. Sroufe (Eds.), Minnesota Symposia on Child Psychology: Vol. 23. Systems and development. (pp. 43-77). Hillsdale, NJ: Erlbaum.
Covington, M. V. (1984). The self-worth theory of achievement motivation: Findings and implications. The Elementary School Journal, 85, 5-20.
Cramer, J. S. (1964). Efficient grouping: Regression and correlation in Engel curve analysis. Journal of the American Statistical Association, 59, 233-250.
Cronbach, L. J. (1976). Research on classrooms and schools: Formulation of questions, design, and analysis. Unpublished manuscript, Stanford University, Stanford Evaluation Consortium, School of Education.
Cronbach, L. J., & Webb, N. M. (1975). Between-class and within-class effects in a reported aptitude × treatment interaction: Reanalysis of a study by G. L. Anderson. Journal of Educational Psychology, 67, 717-724.
Curran, P. J. (2003). Have multilevel models been structural equation models all along? Multivariate Behavioral Research, 38(4), 529-569.
Deci, E. L. (1971). Effects of externally mediated rewards on intrinsic motivation. Journal of Personality and Social Psychology, 18, 105-155.
De Leeuw, J., & Kreft, I. (1986). Random coefficient models for multilevel analysis. Journal of Educational Statistics, 11, 57-85.
Duncan, T. E., Alpert, A., & Duncan, S. C. (1998). Multilevel covariance structure analysis of siblings antisocial behavior. Structural Equation Modeling, 5, 211-228.
Dyer, N. G., Hanges, P. J., & Hall, R. J. (2005). Applying multilevel confirmatory factor analysis techniques to the study of leadership. The Leadership Quarterly, 16, 149-167.
Eccles, J. S., & Wigfield, A. (2002). Motivational beliefs, values, and goals. Annual Review Psychology, 53, 109-132.
Erikson, E. H. (1963). Childhood and society (2nd ed.). New York: Norton.
Farmer, G. L. (2000). Use of multilevel covariance structure analysis to evaluate the multilevel nature of theoretical constructs. Social Work Research, 24(3), 180-189.
Goldstein, H. (1986). Multilevel mixed linear model analysis using iterative generalized least squares. Biometrika, 73(1), 43-56.
Goldstein, H. (1987). Multilevel models in educational and social research. London: Griffin.
Goldstein, H. (1995). Multilevel statistical models (2nd ed.). New York: John Wiley & Sons.
Goldstein, H. (2003). Multilevel statistical models (3rd ed.). New York: Oxford University Press.
Goldstein, H., & McDonald, R. (1988). A general model for the analysis of multilevel data. Psychometrika, 53(4), 455-467.
Gottfried, A. E. (1990). Academic intrinsic motivation in young elementary school children. Journal of Educational Psychology, 82, 525-538.
Graham, S. (1994). Motivation in African Americans. Review of Educational Research, 64, 55-117.
Grolnick, W. S., Gurland, S. T., Jacob, K. F., & Decourcey, W. (2002). The development of self-determination in middle childhood and adolescence. In A. Wigfield & J. S. Eccles (Eds.), Development of achievement motivation (pp. 147-171). San Diego, CA: Academic Press.
Hair, J. F., Anderson, R. E., Tatham, R. L., & Black, W. C. (2006). Multivariate data analysis (6th ed.). London: Prentice-Hall International.
Haggard, E. A. (1958). Intraclass correlation and the analysis of variance. New York: The Dryden Press.
Hannan, M. T. (1970). Problems of aggregation and disaggregation in sociological research. University of North Carolina. Chapel Hill, NC: Institute for Research in Social Science.
Hannan, M. T. (1991). Aggregation and disaggregation in the social sciences. Lexington, Mass: Lexington Books.
Hannan, M. T., & Burstein, L. (1974). Estimation from grouped observations. American Sociological Review, 39(3), 374-392.
Härnqvist, K. (1978). Primary mental abilities at collective and individual levels. Journal of Educational Psychology, 70(5), 706-716.
Harris, J. A. (1913). On the calculation of intra-class and inter-class coefficients of correlation from class moments when the number of possible combinations is large. Biometrika, 9(3/4), 446-472.
Harville, D. A. (1977). Maximum likelihood approaches to variance component estimation and to related problems. Journal of the American Statistical Association, 72(358), 320-338.
Heck, R. H. (2001). Multilevel modeling with SEM. In G. A. Marcoulides & R. E. Schumacker (Eds.), New developments and techniques in structural equation modeling (pp. 89-127). Mahwah, NJ: Lawrence Erlbaum Associates.
Heck, R. H., & Thomas, S. L. (2000). An introduction to multilevel modeling techniques. Mahwah, NJ: Lawrence Erlbaum Associates.
Hofmann, D. A. (1997). An overview of the logic and rationale of hierarchical linear models. Journal of Management, 23(6), 723-744.
Hox, J. (1993). Factor analysis of multilevel data: Gauging the Muthén model. In J. H. L. Oud & R. A. W. van Blokland-Vogelesang (Eds.), Advances in longitudinal and multivariate analysis in the behavioral sciences (pp. 141-156). Nijmegen: ITS.
Hox, J. (2002). Multilevel analysis: Techniques and applications. Mahwah, NJ: Lawrence Erlbaum Associates.
Hox, J., & Maas, C. J. M. (2001). The accuracy of multilevel structural equation modeling with pseudobalanced groups and small samples. Structural Equation Modeling, 8, 198-207.
Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equaton Modeling, 6(1). 1-55.
Jöreskog, K. G., & Sörbom, D. (1996). LISREL 8: User’s reference guide. Chicago: Scientific Software International.
Jöreskog, K. G., Sörbom, D., du Toit, S., & du Toit, M. (2000). LISREL 8: New statistical features. Chicago: Scientific Software International.
Julian, M. W. (2001). The consequences of ignoring multilevel data structures in nonhierarchical covariance modeling. Structural Equation Modeling, 8(3), 325-352.
Kaplan, D. (1998). Methods for multilevel data analysis. In G. A. Marcoulides (Ed.), Modern methods for business research (pp. 337-358). Mahwah, NJ: Lawrence Erlbaum Associates.
Kaplan, D. (2000). Structural equation modeling: Foundations and extensions. Thousand Oaks, CA: Sage.
Kaplan, D., & Elliott, P. R. (1997). A didactic example of multilevel structural equation modeling applicable to the study of organizations. Structural Equation Modeling, 4(1), 1-23.
Kish, L. (1965). Survey sampling. New York: Wiley.
Klein, K. J., Tosi, H., & Cannella, A. A., Jr. (1999). Multilevel theory building: Benefits, barriers, and new developments. Academy of Management Review, 24, 243-248.
Klein, K. J., & Kozlowski, S. W. J. (2000). From micro to meso: Critical steps in conceptualizing and conducting multilevel research. Organizational Research Methods, 3, 211-236.
Kline, R. B. (1998). Principles and practice of structural equation modeling. New York: Guilford Press.
Koch, G. G. (1983). Intraclass correlation coefficient. Encyclopedia of Statistical Science, 4, 212-217.
Kreft, I., & De Leeuw, J. (1998). Introducing multilevel modeling. Thousand Oaks, CA: Sage.
Kruglanski, A. W., Friedman, I., & Zeevi, G. (1971). The effects of extrinsic incentives on some qualitative aspects of task performance. Journal of Personality, 39, 606-617.
Langbein, L. I. (1977). Schools or students: Aggregation problems in the study of student achievement. Evaluation Studies Review Annual, 2, 270-298.
Lee, S. Y. (1990). Multilevel analysis of structural equation models. Biometrika, 77(4), 763-772.
Lee, S. Y., & Poon, W. Y. (1998). Analysis of two-level structural equation models via EM type algorithms. Statistica Sinica, 8, 749-766.
Lepper, M. R., & Henderlong, J. (2000). Turning “play” into “work” and “work” into “play”: 25 years of research on intrinsic versus extrinsic motivation. In C. Sansone & J. M. Harackiewicz (Eds.), Intrinsic and extrinsic motivation: The search for optimal motivation and performance (pp. 257-307). San Diego, CA: Academic Press.
Li, F., Duncan, T. E., Duncan, S. C., Harmer, P., & Acock, A. (1997). Latent variable modeling of multilevel intrinsic motivation data. Measurement in Physical Education and Exercise Science, 1(4), 223-244.
Li, F., Duncan, T. E., Harmer, P., Acock, A., & Stoolmiller, M. (1998). Analyzing measurement models of latent variables through multilevel confirmatory factor analysis and hierarchical linear modeling approaches. Structural Equation Modeling, 5(3), 294-306.
Longford, N. T. (1987). A fast scoring algorithm for maximum likelihood estimation in unbalanced mixed models with nested random effects. Biometrika, 74(4), 817-827.
Longford, N. T., & Muthén, B. O. (1992). Factor analysis for clustered observations. Psychometrika, 57(4), 581-597.
Lüdtke, O., & Trautwein, U. (2007). Aggregating to the between-person level in idiographic research designs: Personal goal research as an example of the need to distinguish between reliability and homogeneity. Journal of Research in Personality, 41, 230-238.
Luke, D. A. (2004). Multilevel modeling. Thousand Oaks, CA: Sage.
MacCallum, R. C., Browne, M. W., & Sugawara, H. M. (1996). Power analysis and determination of sample size for covariance structure modeling. Psychological Methods, 1, 130-149.
Martin, A. J. (2006). The relationship between teachers’ perceptions of student motivation and engagement and teachers’ enjoyment of and confidence in teaching. Asia-Pacific Journal of Teacher Education, 34(1), 73-93.
Mason, W. M., Wong, G. Y., & Entwistle, B. (1984). The multilevel linear model: A better way to do contextual analysis. In S. Leinhardt (Ed.), Sociological methodology 1983-1984 (pp. 72-103). London: Jossey Bass.
McDonald, R. P. (1994). The bilevel reticular action model for path analysis with latent variables. Sociological Methods and Research, 22(3), 399-413.
McDonald, R. P., & Goldstein, H. (1989). Balanced versus unbalanced designs for linear structural relations in two-level data. British Journal of Mathematical and Statistical Psychology, 42, 215-232.
Mehta, P. D., & Neale, M. C. (2005). People are variables too: Multilevel structural equations modeling. Psychological Methods, 10(3), 259-284.
Middleton, J. A., & Spanias, P. A. (1999). Motivation for achievement in mathematics: Findings, generalizations, and criticisms of the research. Journal for Research in Mathematics Education, 30(1), 65-88.
Muthén, B. O. (1989). Latent variable modeling in heterogeneous populations. Psychometrika, 54, 557-585.
Muthén, B. O. (1994). Multilevel covariance structure analysis. Sociological Methods and Research, 22, 376-398.
Muthén, B. O. (1991). Multilevel factor analysis of class and student achievement components. Journal of Educational Measurement, 28(4), 338-354.
Muthén, L. K., & Muthén, B. O. (2006). Mplus user’s guide (4th ed.). Los Angeles, CA: Muthén & Muthén.
Muthén, B., & Satorra, A. (1989). Multilevel aspects of varying parameters in structural models. In R. D. Bock (Ed.), Multilevel analysis of educational data (pp. 87-99). New York: Academic Press.
Muthén, B. O., & Satorra, A. (1995). Complex sample data in structural equation modeling. In P. Marsden (Ed.), Sociological methodology 1995 (pp. 267-316). Washington, DC: American Sociological Association.
Newman, R. S. (2002). What do I need to do to succeed…when I don’t understand what I’m doing!?: Developmental influences on students’ adaptive help seeking. In A. Wigfield & J. S. Eccles (Eds.), Development of achievement motivation (pp. 285-306). San Diego, CA: Academic Press.
Newman, R. S., & Goldin, L. (1990). Children’s reluctance to seek help with school work. Journal of Educational Psychology, 82, 92-100.
Nicholls, J. G. (1984). Achievement motivation: Conceptions of ability, subjective experience, task choice, and performance. Psychological Review, 91, 328-346.
Nicholls, J. G., Cobb, P., Yackel, E., Wood, T., & Wheatley, G. (1990). Students’ theories of mathematics and their mathematical knowledge: Multiple dimensions of assessment. In G. Kulm (Ed.), Assessing higher order thinking in mathematics (pp. 137-154). Washington, DC: American Association for the Advancement of Science.
Olafson, K. M., & Ferraro, F. R. (2001). Effects of emotional state on lexical decision performance. Brain and Cognition, 45, 15-20.
Organization for Economic Co-operation and Development [OECD] (2005). PISA 2003 technical report. Paris: OECD.
描述 博士
國立政治大學
教育研究所
92152512
95
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0921525121
資料類型 thesis
dc.contributor.advisor 余民寧zh_TW
dc.contributor.advisor Yu,Min Ningen_US
dc.contributor.author (Authors) 李仁豪zh_TW
dc.contributor.author (Authors) Li,Ren Hauen_US
dc.creator (作者) 李仁豪zh_TW
dc.creator (作者) Li,Ren Hauen_US
dc.date (日期) 2006en_US
dc.date.accessioned 18-Sep-2009 18:20:41 (UTC+8)-
dc.date.available 18-Sep-2009 18:20:41 (UTC+8)-
dc.date.issued (上傳時間) 18-Sep-2009 18:20:41 (UTC+8)-
dc.identifier (Other Identifiers) G0921525121en_US
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/36335-
dc.description (描述) 博士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 教育研究所zh_TW
dc.description (描述) 92152512zh_TW
dc.description (描述) 95zh_TW
dc.description.abstract (摘要) 本研究的主要目的是藉由實徵的PISA資料庫資料將多層次結構方程式模型的方法學介紹到台灣的教育領域。多層次結構方程式模型適合應用在大型且具階層或巢狀結構的資料,可以解決因群集性抽樣設計所導致的樣本點相依的問題。
      本研究中包含三個小研究。在研究一中,實徵的資料經由多層次結構方程式模型步驟化的分析,並與傳統的結構方程式模型的分析結果相互比較。一共有五個構念及其測量指標從PISA 2003資料庫中被選取來建構多層次結構方程式模型。樣本包含948個學校共26,884位15歲來自加拿大的學生。研究結果顯示某些結構係數的正負向關係在組內層次與組間層次是十分不同的,這也彰顯出多層次結構方程式模型與傳統結構方程式模型比較下的價值。研究一的發現指出,在數學興趣與數學工具性動機控制的條件下,教師的支持對學生的數學成績及數學自我效能在組間層次並無效果,但教師的支持對學生的數學自我效能在組內層次具有正向顯著的效果。此外,除了在組間層次上數學興趣對數學成績有顯著的負向效果以及數學工具性動機對數學自我效能沒有顯著效果外,數學興趣與數學工具性動機對數學成績及數學自我效能具有顯著的正向效果。另外,數學成績對數學自我效能具有很大的效果,特別是在組間層次。
      在研究二中,藉由評估跨越不同層級二樣本大小(即120、240、360、480、600、720、840、948個學校)時的模式適配度及參數估計值的穩定性,來決定一個最小較佳的層級二樣本數相對於層級二估計參數數目的比值。研究結果顯示,該比值大約至少8:1是較可以被接受的結果。在研究三中,藉由多群組多層次結構方程式模型進行跨國家的比較。根據研究二的較佳最小比例以及亞洲國家在PISA 2003資料庫中有限的層級二樣本數,一個將焦點集中在數學興趣對數學成績的不同層次預測關係之新多層次結構方程式模型被提出。由再次隨機取樣的加拿大145所學校作為西方國家的代表樣本,而由只有143所學校的日本樣本作為東方國家的代表。研究結果顯示,跨越加拿大與日本樣本,在任一層級中出現十分不同的預測效果。數學興趣對數學成績的預測效果在加拿大樣本中的兩層級皆是正向地顯著,但在日本樣本中卻都是負向地顯著。這意謂著未來某些重要的教育及心理學變項之間關係的跨國研究應該在被重視。
zh_TW
dc.description.abstract (摘要) The main purpose of this research was to introduce multilevel structural equation modeling methodology to Taiwan education field by applying empirical example from PISA 2003 database. Multilevel structural equation modeling was suitable to be applied to the large-scale and hierarchical or nested data structure. It could solve the problem of dependency among sample units resulted from clustered sampling design.
     There were three studies in the research. In study one, the empirical data dealt with multilevel structural equation modeling analysis was undertaken step by step and compared with conventional structural equation modeling analysis. There were five constructs and their measurement indicators from PISA 2003 database mapped to form the multilevel structural equation model. The sample was 948 schools with 26884 15-year-old students from Canada. The result showed the valences of some structural coefficients were quite different in between-level and within-level structural equation models, which characterisized the value of multilevel structural equation modeling when compared with the outcomes from conventional structural equation modeling analysis. The findings of study one indicated that teacher support had no effect on students’ mathematics grades and mathematics self-efficacy in between-level part but had a significant positive effect on mathematics self-efficacy in within-level part when both interest in mathematics and instrumental motivation to mathematics grades were considered in the model. Besides, interest in mathematics and instrumental motivation had positive effects on mathematics grades and mathematics self-efficacy except for negative effect from interest in mathematics to mathematics grades and no effect from instrumental motivation to mathematics self-efficacy in between-level part. In addition, mathematics grades had great influences on mathematics self-efficacy, especially in between-level part.
     In study two, a better minimum ratio of the number of level-2 units relative to the number of parameter estimates in between-level part was searched by evaluating the model-fit and stability of parameter estimates across several Canada samples with 120, 240, 360, 480, 600, 720 ,840, and 948 schools. The result showed that the ratio at least about 8:1 was appreciated. In study three, cross-national comparisons were processed by multiple group multilevel structural equation modeling. Based on the better minimum ratio from study two and limited level-2 sample sizes from Asian countries in PISA 2003, a new multilevel structural equation model was proposed focusing on the structural coefficient of mathematics grades regressed on interest in mathematics in each level. A random resampling Canada sample with 145 schools was served as the representative of the West nations and the Japan sample with only 143 schools was on behalf of the East nations. The result showed that quite different predictive effect in either level across the Canada sample and the Japan sample. The predictive effects of the interest in mathematics to mathematics grades were positively significant in the Canada sample in each level but were negatively significant in the Japan sample in each level, which implied that cross-national studies in some important relationships among educational and psychological variables should be emphasized in the future.
en_US
dc.description.tableofcontents Abstract ----------------------------------------------------------------------------------- i
     List of Tables ----------------------------------------------------------------------------- vi
     List of Figures ---------------------------------------------------------------------------- vii
     Chapter
     One Introduction -------------------------------------------------------------------- 1
     I. Research Purposes and Questions --------------------------------------------- 7
     II. Hypotheses ---------------------------------------------------------------------- 8
     III. Limitation of Study ------------------------------------------------------------ 9
     IV. Terminology of Selected Keywords ----------------------------------------- 9
     Two Literature Review ------------------------------------------------------------- 11
     I. Background and History of Multilevel Conception and
     Multilevel Regression Modeling ------------------------------------------- 12
     II. Multilevel Regression Models ------------------------------------------------ 14
     A. One-Way ANOVA with Random Effects --------------------------------- 15
     B. Means-as-Outcomes Regression ------------------------------------------- 17
     C. One-Way ANCOVA with Random Effects ------------------------------- 17
     D. Random-Coefficients Regression Model --------------------------------- 18
     E. Intercepts- and Slopes-as-Outcomes -------------------------------------- 19
     F. A model with Nonrandomly Varying Slopes ----------------------------- 19
     III. Multilevel Structural Equation Modeling ---------------------------------- 22
     A. Related Researches on Methods for Multilevel Structural
     Equation Modeling --------------------------------------------------------- 23
     B. Specification of Multilevel Structural Equation Models --------------- 25
     C. Estimation of Multilevel Structural Equation Models ------------------ 28
     D. Some Technical Issues on Multilevel Structural Equation Models---- 32
     IV. An Introduction to PISA ------------------------------------------------------- 35
     V. An Empirical Example from PISA Database -------------------------------- 38
     Three Method ------------------------------------------------------------------------- 42
     I. Subjects --------------------------------------------------------------------------- 42
     II. Analysis -------------------------------------------------------------------------- 43
     III. Measurement Indicators from PISA ----------------------------------------- 44
     IV. Research Procedure------------------------------------------------------------- 49
     Four Results and Discussion--------------------------------------------------------- 51
     I. Study One: Multilevel Structural Equation Modeling ---------------------- 51
     II. Study Two: Decide A Better Minimum Ratio-------------------------------- 66
     III. Study Three: Multiple Group Multilevel Structural Equation Modeling 76
     Five Conclusion ----------------------------------------------------------------------- 83
     I. Summary and Conclusion ------------------------------------------------------- 83
     II. Suggestions ---------------------------------------------------------------------- 84
     III. Implications for Future Research -------------------------------------------- 86
     Reference ---------------------------------------------------------------------------------- 87
     Appendix A: Canada sample and Japan sample -------------------------------------- 94
     Appendix B: Total sample covariance matrix ---------------------------------------- 97
     Appendix C: Between-sample covariance matrix ----------------------------------- 98
     Appendix D: Pooled within-sample covariance matrix ----------------------------- 99
     Appendix E: Study one syntax ---------------------------------------------------------- 100
     Appendix F: Study three syntax I ------------------------------------------------------ 101
     Appendix G: Study three syntax II ----------------------------------------------------- 102
     Appendix H: Parameter specification for study three syntax I --------------------- 103
zh_TW
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0921525121en_US
dc.subject (關鍵詞) 多層次結構方程式模型zh_TW
dc.subject (關鍵詞) 層級二樣本點數目zh_TW
dc.subject (關鍵詞) 多群組多層次結構方程式模型zh_TW
dc.subject (關鍵詞) multilevel structural equation modelingen_US
dc.subject (關鍵詞) number of level-2 unitsen_US
dc.subject (關鍵詞) multiple group multilevel structural equation modelingen_US
dc.subject (關鍵詞) MUMLen_US
dc.title (題名) 多層次結構方程式模型在大型資料庫上的應用zh_TW
dc.title (題名) Applying Multilevel Structural Equation Modeling to a Large-Scale Databaseen_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) Aitkin, M. A., & Longford, N. (1986). Statistical modelling in school effectiveness studies (with discussion). Journal of the Royal Statistical Society, Series A, 149, 1-43.zh_TW
dc.relation.reference (參考文獻) Amabile, T. M., Hill, K. G., Hennessey, B. A., & Tighe, E. M. (1994). The work preference inventory: Assessing intrinsic and extrinsic motivational orientations. Journal of Personality and Social Psychology, 66, 950-967.zh_TW
dc.relation.reference (參考文獻) Bandura, A. (1997). Self-efficacy: The exercise of control. New York: Freeman.zh_TW
dc.relation.reference (參考文獻) Bentler, P. M. (1988). Comparative fit indexes in structural models. Psychological Bulletin, 107, 238-246.zh_TW
dc.relation.reference (參考文獻) Bentler, P. M. (1992). On the fit of models to covariances and methodology to the Bulletin. Psychological Bulletin, 112, 400-404.zh_TW
dc.relation.reference (參考文獻) Bentler, P. M., & Liang, J. (2003). Two-level mean and covariance structures: Maximum likelihood via an EM algorithm. In S. P. Reise & N. Duan (Eds.), Multilevel modeling: Methodological advances, issues, and applications (pp. 53-70). Mahwah, NJ: Lawrence Erlbaum Associates.zh_TW
dc.relation.reference (參考文獻) Bliese, P. D., & Halverson, R. R. (1998). Group size and measures of group-level properties: An examination of eta-squared and ICC values. Journal of Management, 24(2), 157-172.zh_TW
dc.relation.reference (參考文獻) Bliese, P. D. (2000). Within-group agreement, non-independence, and reliability: Implications for data aggregation and analysis. In K. J. Klein & S. W. J. Kozlowski (Eds.), Multilevel theory, research, and methods in organizations: Foundations, Extensions, and new directions. San Francisco: Jossey-Bass.zh_TW
dc.relation.reference (參考文獻) Bock, R. D. (1989). Multilevel analysis of educational data. San Diego, CA: Academic Press.zh_TW
dc.relation.reference (參考文獻) Boomsma, A. (1983). On the robustness of LISREL (maximum likelihood estimation) against small sample size and nonnormality. Unpublished doctoral dissertation, University of Groningen.zh_TW
dc.relation.reference (參考文獻) Brophy, J. (1987). Socializing students’ motivation to learn. In M. L. Maehr & D. A. Kleiber (Eds.), Advances in motivation and achievement (Vol. 5, pp. 181-210). Greenwich, CT: JAI Press.zh_TW
dc.relation.reference (參考文獻) Pekrun, R. (2000). A social-cognitive, control-value theory of achievement emotions. In J. Heckhausen (Ed.), Motivational psychology of human development (pp. 143-163). Oxford, England: Elsevier.zh_TW
dc.relation.reference (參考文獻) Pekrun, R., Goetz, T., Titz, W., & Perry, R. P. (2002). Academic emotions in students’ self-regulated learning and achievement: A program of qualitative and quantitative research. Educational Psychologist, 37(2), 91-105.zh_TW
dc.relation.reference (參考文獻) Pintrich, P. R. & Schunk, D. H. (1996). Motivation in education: Theory, research, and applications. Englewood Cliffs, NJ: Merrill/Prentice Hall.zh_TW
dc.relation.reference (參考文獻) Raudenbush, S. W. (1995). Maximum likelihood estimation for unbalanced multilevel covariance structure models via the EM algorithm. British Journal of Mathematical and Statistical Psychology, 48, 359-370.zh_TW
dc.relation.reference (參考文獻) Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models: Applications and data analysis methods (2nd ed.). Thousand Oaks, CA: Sage.zh_TW
dc.relation.reference (參考文獻) Raudenbush, S. W., Rowan, B., & Kang, S. J. (1991). A multilevel, multivariate model for studying school climate in secondary schools with estimation via the EM algorithm. Journal of Educational Statistics, 16, 295-330.zh_TW
dc.relation.reference (參考文獻) Raudenbush, S. W., & Sampson, R. (1999). Assessing direct and indirect effects in multilevel designs with latent variables. Sociological Methods & Research, 28(2), 123-153.zh_TW
dc.relation.reference (參考文獻) Robinson, W. S. (1950). Ecological correlations and the behaviour of individuals. American Sociology Review, 15, 351-357.zh_TW
dc.relation.reference (參考文獻) Rowe, K. J. (2003). Estimating interdependent effects among multilevel composite variables in psychosocial research: An example of the application of multilevel structural equation modeling. In S. P. Reise & N. Duan (Eds.), Multilevel modeling: Methodological advances, issues, and applications (pp. 255-284). Mahwah, NJ: Lawrence Erlbaum Associates.zh_TW
dc.relation.reference (參考文獻) Rowe, K. J., & Hill, P. W. (1998). Modeling educational effectiveness in classrooms: The use of multi-level structural equations to model students’ progress. Educational Research and Evaluation, 4(4), 307-347.zh_TW
dc.relation.reference (參考文獻) Brown, M. W., & Cudeck, R. (1993). Alternative ways of assessing model fit. In K. A. Bollen & J. S. Long (Eds.), Testing structural equation models (pp. 136-162). Newbury Park, CA: Sage.zh_TW
dc.relation.reference (參考文獻) Rowe, K. J., & Rowe, K. S. (1999). Investigating the relationship between students’ attentive-inattentive behaviors in the classroom and their literacy progress. International Journal of Education Research, 31(1-2), 1-137.zh_TW
dc.relation.reference (參考文獻) Schmidt, W. B. (1969). Covariance structure analysis of the multivariate random effects model. Unpublished doctoral dissertation, Department of Education, University of Chicago.zh_TW
dc.relation.reference (參考文獻) Schunk, D. H. & Pajares, F. (2002). The development of academic self-efficacy. In A. Wigfield & J. S. Eccles (Eds.), Development of achievement motivation (pp. 15-31). San Diego, CA: Academic Press.zh_TW
dc.relation.reference (參考文獻) Snijders, T. A. B., & Bosker, R. J. (1999). Multilevel analysis: An introduction to basic and advanced multilevel modeling. London: Sage.zh_TW
dc.relation.reference (參考文獻) Stevenson, H. W., Lee, S., Chen, C., Stigler, J. W., Hsu, C. C., & Kitamura, S. (1990). Contexts of achievement: A study of American, Chinese, and Japanese children. Monographs of the Society for Research in Child Development, 55, (Serial No. 221.).zh_TW
dc.relation.reference (參考文獻) Stipek, D. (2002). Good instruction is motivating. In A. Wigfield & J. S. Eccles (Eds.), Development of achievement motivation (pp. 309-332). San Diego, CA: Academic Press.zh_TW
dc.relation.reference (參考文獻) Tucker, L. R., & Lewis, C. (1973). The reliability coefficient for maximum likelihood factor analysis. Psychometrika, 38, 1-10.zh_TW
dc.relation.reference (參考文獻) Tanaka, J. S. (1987). “How big is big enough ?”: Sample size and goodness of fit in structural equation models with latent variables. Child Development, 58, 134-146.zh_TW
dc.relation.reference (參考文獻) Tate, R. L., & Wongbundhit, Y. (1983). Random versus nonrandom coefficient models for multilevel analysis. Journal of Educational Statistics, 8, 103-120.zh_TW
dc.relation.reference (參考文獻) Wiley, D. E., & Bock, R. D. (1967). Quasi-experimentation in educational settings: Comment. School Review, 75(4), 353-366.zh_TW
dc.relation.reference (參考文獻) Bryk, A. S., & Raudenbush, S. W. (1992). Hierarchical linear models: Applications and data analysis methods. Newbury Park, CA: Sage.zh_TW
dc.relation.reference (參考文獻) Bryk, A. S., Raudenbush, S. W., & Congdon, R. (1994). HLM: Hierarchical linear modeling with the HLM/2L and HLM/3L Programs. Chicago: Scientific Software International.zh_TW
dc.relation.reference (參考文獻) Burstein, L., Kim, K. S., & Delandshere, G. (1989). Multilevel investigations of systematically varying slopes: Issues, alternatives, and consequences. In R. D. Bock (Ed.), Multilevel analysis of educational data (pp. 233-276). New York: Academic Press.zh_TW
dc.relation.reference (參考文獻) Burstein, L., Linn, R. L., & Capell, F. J. (1978). Analyzing multilevel data in the presence of heterogeneous within-class regressions. Journal of Educational Statistics, 3(4), 347-383.zh_TW
dc.relation.reference (參考文獻) Byrne, B. M. (1998). Structural equation modeling with LISREL, PRELIS, and SIMPLIS: Basic concepts, applications, and programming. Mahwah, NJ: Lawrence Erlbaum Associates.zh_TW
dc.relation.reference (參考文獻) Caprara, G. V., Barbaranelli, C., Borgogni, L., & Steca, P. (2003). Efficacy beliefs as determinants of teachers’ job satisfaction. Journal of Educational Psychology, 95(4), 821-832.zh_TW
dc.relation.reference (參考文獻) Chan, D. (1998). Functional relations among constructs in the same content domain at different levels of analysis: A typology of composition models. Journal of Applied Psychology, 83(2), 234-246.zh_TW
dc.relation.reference (參考文獻) Cheung, M. W. L., & Au, K. (2005). Applications of multilevel structural equation modeling to cross-national research. Structural Equation Modeling, 12(4), 598-619.zh_TW
dc.relation.reference (參考文獻) Chiu, C., Hong, Y., & Dweck, C. S. (1997). Lay disposition and implicit theories of personality. Journal of Personality and Social Psychology, 73, 19-30.zh_TW
dc.relation.reference (參考文獻) Coleman, J. S., Campbell, E. O., Hobson, C. F., McPartland, J., Mood, A. M., Weifeld, F. D., & York, R. L. (1966). Equality of education opportunity. Washington, DC: U. S. Department of Health, Education and Welfare, Office of Education, U. S. Government Printing Office.zh_TW
dc.relation.reference (參考文獻) Connell, J. P., & Wellborn, J. G. (1991). Competence, autonomy, and relatedness: A motivational analysis of self-system processes. In M. R. Gunnar & L. A. Sroufe (Eds.), Minnesota Symposia on Child Psychology: Vol. 23. Systems and development. (pp. 43-77). Hillsdale, NJ: Erlbaum.zh_TW
dc.relation.reference (參考文獻) Covington, M. V. (1984). The self-worth theory of achievement motivation: Findings and implications. The Elementary School Journal, 85, 5-20.zh_TW
dc.relation.reference (參考文獻) Cramer, J. S. (1964). Efficient grouping: Regression and correlation in Engel curve analysis. Journal of the American Statistical Association, 59, 233-250.zh_TW
dc.relation.reference (參考文獻) Cronbach, L. J. (1976). Research on classrooms and schools: Formulation of questions, design, and analysis. Unpublished manuscript, Stanford University, Stanford Evaluation Consortium, School of Education.zh_TW
dc.relation.reference (參考文獻) Cronbach, L. J., & Webb, N. M. (1975). Between-class and within-class effects in a reported aptitude × treatment interaction: Reanalysis of a study by G. L. Anderson. Journal of Educational Psychology, 67, 717-724.zh_TW
dc.relation.reference (參考文獻) Curran, P. J. (2003). Have multilevel models been structural equation models all along? Multivariate Behavioral Research, 38(4), 529-569.zh_TW
dc.relation.reference (參考文獻) Deci, E. L. (1971). Effects of externally mediated rewards on intrinsic motivation. Journal of Personality and Social Psychology, 18, 105-155.zh_TW
dc.relation.reference (參考文獻) De Leeuw, J., & Kreft, I. (1986). Random coefficient models for multilevel analysis. Journal of Educational Statistics, 11, 57-85.zh_TW
dc.relation.reference (參考文獻) Duncan, T. E., Alpert, A., & Duncan, S. C. (1998). Multilevel covariance structure analysis of siblings antisocial behavior. Structural Equation Modeling, 5, 211-228.zh_TW
dc.relation.reference (參考文獻) Dyer, N. G., Hanges, P. J., & Hall, R. J. (2005). Applying multilevel confirmatory factor analysis techniques to the study of leadership. The Leadership Quarterly, 16, 149-167.zh_TW
dc.relation.reference (參考文獻) Eccles, J. S., & Wigfield, A. (2002). Motivational beliefs, values, and goals. Annual Review Psychology, 53, 109-132.zh_TW
dc.relation.reference (參考文獻) Erikson, E. H. (1963). Childhood and society (2nd ed.). New York: Norton.zh_TW
dc.relation.reference (參考文獻) Farmer, G. L. (2000). Use of multilevel covariance structure analysis to evaluate the multilevel nature of theoretical constructs. Social Work Research, 24(3), 180-189.zh_TW
dc.relation.reference (參考文獻) Goldstein, H. (1986). Multilevel mixed linear model analysis using iterative generalized least squares. Biometrika, 73(1), 43-56.zh_TW
dc.relation.reference (參考文獻) Goldstein, H. (1987). Multilevel models in educational and social research. London: Griffin.zh_TW
dc.relation.reference (參考文獻) Goldstein, H. (1995). Multilevel statistical models (2nd ed.). New York: John Wiley & Sons.zh_TW
dc.relation.reference (參考文獻) Goldstein, H. (2003). Multilevel statistical models (3rd ed.). New York: Oxford University Press.zh_TW
dc.relation.reference (參考文獻) Goldstein, H., & McDonald, R. (1988). A general model for the analysis of multilevel data. Psychometrika, 53(4), 455-467.zh_TW
dc.relation.reference (參考文獻) Gottfried, A. E. (1990). Academic intrinsic motivation in young elementary school children. Journal of Educational Psychology, 82, 525-538.zh_TW
dc.relation.reference (參考文獻) Graham, S. (1994). Motivation in African Americans. Review of Educational Research, 64, 55-117.zh_TW
dc.relation.reference (參考文獻) Grolnick, W. S., Gurland, S. T., Jacob, K. F., & Decourcey, W. (2002). The development of self-determination in middle childhood and adolescence. In A. Wigfield & J. S. Eccles (Eds.), Development of achievement motivation (pp. 147-171). San Diego, CA: Academic Press.zh_TW
dc.relation.reference (參考文獻) Hair, J. F., Anderson, R. E., Tatham, R. L., & Black, W. C. (2006). Multivariate data analysis (6th ed.). London: Prentice-Hall International.zh_TW
dc.relation.reference (參考文獻) Haggard, E. A. (1958). Intraclass correlation and the analysis of variance. New York: The Dryden Press.zh_TW
dc.relation.reference (參考文獻) Hannan, M. T. (1970). Problems of aggregation and disaggregation in sociological research. University of North Carolina. Chapel Hill, NC: Institute for Research in Social Science.zh_TW
dc.relation.reference (參考文獻) Hannan, M. T. (1991). Aggregation and disaggregation in the social sciences. Lexington, Mass: Lexington Books.zh_TW
dc.relation.reference (參考文獻) Hannan, M. T., & Burstein, L. (1974). Estimation from grouped observations. American Sociological Review, 39(3), 374-392.zh_TW
dc.relation.reference (參考文獻) Härnqvist, K. (1978). Primary mental abilities at collective and individual levels. Journal of Educational Psychology, 70(5), 706-716.zh_TW
dc.relation.reference (參考文獻) Harris, J. A. (1913). On the calculation of intra-class and inter-class coefficients of correlation from class moments when the number of possible combinations is large. Biometrika, 9(3/4), 446-472.zh_TW
dc.relation.reference (參考文獻) Harville, D. A. (1977). Maximum likelihood approaches to variance component estimation and to related problems. Journal of the American Statistical Association, 72(358), 320-338.zh_TW
dc.relation.reference (參考文獻) Heck, R. H. (2001). Multilevel modeling with SEM. In G. A. Marcoulides & R. E. Schumacker (Eds.), New developments and techniques in structural equation modeling (pp. 89-127). Mahwah, NJ: Lawrence Erlbaum Associates.zh_TW
dc.relation.reference (參考文獻) Heck, R. H., & Thomas, S. L. (2000). An introduction to multilevel modeling techniques. Mahwah, NJ: Lawrence Erlbaum Associates.zh_TW
dc.relation.reference (參考文獻) Hofmann, D. A. (1997). An overview of the logic and rationale of hierarchical linear models. Journal of Management, 23(6), 723-744.zh_TW
dc.relation.reference (參考文獻) Hox, J. (1993). Factor analysis of multilevel data: Gauging the Muthén model. In J. H. L. Oud & R. A. W. van Blokland-Vogelesang (Eds.), Advances in longitudinal and multivariate analysis in the behavioral sciences (pp. 141-156). Nijmegen: ITS.zh_TW
dc.relation.reference (參考文獻) Hox, J. (2002). Multilevel analysis: Techniques and applications. Mahwah, NJ: Lawrence Erlbaum Associates.zh_TW
dc.relation.reference (參考文獻) Hox, J., & Maas, C. J. M. (2001). The accuracy of multilevel structural equation modeling with pseudobalanced groups and small samples. Structural Equation Modeling, 8, 198-207.zh_TW
dc.relation.reference (參考文獻) Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equaton Modeling, 6(1). 1-55.zh_TW
dc.relation.reference (參考文獻) Jöreskog, K. G., & Sörbom, D. (1996). LISREL 8: User’s reference guide. Chicago: Scientific Software International.zh_TW
dc.relation.reference (參考文獻) Jöreskog, K. G., Sörbom, D., du Toit, S., & du Toit, M. (2000). LISREL 8: New statistical features. Chicago: Scientific Software International.zh_TW
dc.relation.reference (參考文獻) Julian, M. W. (2001). The consequences of ignoring multilevel data structures in nonhierarchical covariance modeling. Structural Equation Modeling, 8(3), 325-352.zh_TW
dc.relation.reference (參考文獻) Kaplan, D. (1998). Methods for multilevel data analysis. In G. A. Marcoulides (Ed.), Modern methods for business research (pp. 337-358). Mahwah, NJ: Lawrence Erlbaum Associates.zh_TW
dc.relation.reference (參考文獻) Kaplan, D. (2000). Structural equation modeling: Foundations and extensions. Thousand Oaks, CA: Sage.zh_TW
dc.relation.reference (參考文獻) Kaplan, D., & Elliott, P. R. (1997). A didactic example of multilevel structural equation modeling applicable to the study of organizations. Structural Equation Modeling, 4(1), 1-23.zh_TW
dc.relation.reference (參考文獻) Kish, L. (1965). Survey sampling. New York: Wiley.zh_TW
dc.relation.reference (參考文獻) Klein, K. J., Tosi, H., & Cannella, A. A., Jr. (1999). Multilevel theory building: Benefits, barriers, and new developments. Academy of Management Review, 24, 243-248.zh_TW
dc.relation.reference (參考文獻) Klein, K. J., & Kozlowski, S. W. J. (2000). From micro to meso: Critical steps in conceptualizing and conducting multilevel research. Organizational Research Methods, 3, 211-236.zh_TW
dc.relation.reference (參考文獻) Kline, R. B. (1998). Principles and practice of structural equation modeling. New York: Guilford Press.zh_TW
dc.relation.reference (參考文獻) Koch, G. G. (1983). Intraclass correlation coefficient. Encyclopedia of Statistical Science, 4, 212-217.zh_TW
dc.relation.reference (參考文獻) Kreft, I., & De Leeuw, J. (1998). Introducing multilevel modeling. Thousand Oaks, CA: Sage.zh_TW
dc.relation.reference (參考文獻) Kruglanski, A. W., Friedman, I., & Zeevi, G. (1971). The effects of extrinsic incentives on some qualitative aspects of task performance. Journal of Personality, 39, 606-617.zh_TW
dc.relation.reference (參考文獻) Langbein, L. I. (1977). Schools or students: Aggregation problems in the study of student achievement. Evaluation Studies Review Annual, 2, 270-298.zh_TW
dc.relation.reference (參考文獻) Lee, S. Y. (1990). Multilevel analysis of structural equation models. Biometrika, 77(4), 763-772.zh_TW
dc.relation.reference (參考文獻) Lee, S. Y., & Poon, W. Y. (1998). Analysis of two-level structural equation models via EM type algorithms. Statistica Sinica, 8, 749-766.zh_TW
dc.relation.reference (參考文獻) Lepper, M. R., & Henderlong, J. (2000). Turning “play” into “work” and “work” into “play”: 25 years of research on intrinsic versus extrinsic motivation. In C. Sansone & J. M. Harackiewicz (Eds.), Intrinsic and extrinsic motivation: The search for optimal motivation and performance (pp. 257-307). San Diego, CA: Academic Press.zh_TW
dc.relation.reference (參考文獻) Li, F., Duncan, T. E., Duncan, S. C., Harmer, P., & Acock, A. (1997). Latent variable modeling of multilevel intrinsic motivation data. Measurement in Physical Education and Exercise Science, 1(4), 223-244.zh_TW
dc.relation.reference (參考文獻) Li, F., Duncan, T. E., Harmer, P., Acock, A., & Stoolmiller, M. (1998). Analyzing measurement models of latent variables through multilevel confirmatory factor analysis and hierarchical linear modeling approaches. Structural Equation Modeling, 5(3), 294-306.zh_TW
dc.relation.reference (參考文獻) Longford, N. T. (1987). A fast scoring algorithm for maximum likelihood estimation in unbalanced mixed models with nested random effects. Biometrika, 74(4), 817-827.zh_TW
dc.relation.reference (參考文獻) Longford, N. T., & Muthén, B. O. (1992). Factor analysis for clustered observations. Psychometrika, 57(4), 581-597.zh_TW
dc.relation.reference (參考文獻) Lüdtke, O., & Trautwein, U. (2007). Aggregating to the between-person level in idiographic research designs: Personal goal research as an example of the need to distinguish between reliability and homogeneity. Journal of Research in Personality, 41, 230-238.zh_TW
dc.relation.reference (參考文獻) Luke, D. A. (2004). Multilevel modeling. Thousand Oaks, CA: Sage.zh_TW
dc.relation.reference (參考文獻) MacCallum, R. C., Browne, M. W., & Sugawara, H. M. (1996). Power analysis and determination of sample size for covariance structure modeling. Psychological Methods, 1, 130-149.zh_TW
dc.relation.reference (參考文獻) Martin, A. J. (2006). The relationship between teachers’ perceptions of student motivation and engagement and teachers’ enjoyment of and confidence in teaching. Asia-Pacific Journal of Teacher Education, 34(1), 73-93.zh_TW
dc.relation.reference (參考文獻) Mason, W. M., Wong, G. Y., & Entwistle, B. (1984). The multilevel linear model: A better way to do contextual analysis. In S. Leinhardt (Ed.), Sociological methodology 1983-1984 (pp. 72-103). London: Jossey Bass.zh_TW
dc.relation.reference (參考文獻) McDonald, R. P. (1994). The bilevel reticular action model for path analysis with latent variables. Sociological Methods and Research, 22(3), 399-413.zh_TW
dc.relation.reference (參考文獻) McDonald, R. P., & Goldstein, H. (1989). Balanced versus unbalanced designs for linear structural relations in two-level data. British Journal of Mathematical and Statistical Psychology, 42, 215-232.zh_TW
dc.relation.reference (參考文獻) Mehta, P. D., & Neale, M. C. (2005). People are variables too: Multilevel structural equations modeling. Psychological Methods, 10(3), 259-284.zh_TW
dc.relation.reference (參考文獻) Middleton, J. A., & Spanias, P. A. (1999). Motivation for achievement in mathematics: Findings, generalizations, and criticisms of the research. Journal for Research in Mathematics Education, 30(1), 65-88.zh_TW
dc.relation.reference (參考文獻) Muthén, B. O. (1989). Latent variable modeling in heterogeneous populations. Psychometrika, 54, 557-585.zh_TW
dc.relation.reference (參考文獻) Muthén, B. O. (1994). Multilevel covariance structure analysis. Sociological Methods and Research, 22, 376-398.zh_TW
dc.relation.reference (參考文獻) Muthén, B. O. (1991). Multilevel factor analysis of class and student achievement components. Journal of Educational Measurement, 28(4), 338-354.zh_TW
dc.relation.reference (參考文獻) Muthén, L. K., & Muthén, B. O. (2006). Mplus user’s guide (4th ed.). Los Angeles, CA: Muthén & Muthén.zh_TW
dc.relation.reference (參考文獻) Muthén, B., & Satorra, A. (1989). Multilevel aspects of varying parameters in structural models. In R. D. Bock (Ed.), Multilevel analysis of educational data (pp. 87-99). New York: Academic Press.zh_TW
dc.relation.reference (參考文獻) Muthén, B. O., & Satorra, A. (1995). Complex sample data in structural equation modeling. In P. Marsden (Ed.), Sociological methodology 1995 (pp. 267-316). Washington, DC: American Sociological Association.zh_TW
dc.relation.reference (參考文獻) Newman, R. S. (2002). What do I need to do to succeed…when I don’t understand what I’m doing!?: Developmental influences on students’ adaptive help seeking. In A. Wigfield & J. S. Eccles (Eds.), Development of achievement motivation (pp. 285-306). San Diego, CA: Academic Press.zh_TW
dc.relation.reference (參考文獻) Newman, R. S., & Goldin, L. (1990). Children’s reluctance to seek help with school work. Journal of Educational Psychology, 82, 92-100.zh_TW
dc.relation.reference (參考文獻) Nicholls, J. G. (1984). Achievement motivation: Conceptions of ability, subjective experience, task choice, and performance. Psychological Review, 91, 328-346.zh_TW
dc.relation.reference (參考文獻) Nicholls, J. G., Cobb, P., Yackel, E., Wood, T., & Wheatley, G. (1990). Students’ theories of mathematics and their mathematical knowledge: Multiple dimensions of assessment. In G. Kulm (Ed.), Assessing higher order thinking in mathematics (pp. 137-154). Washington, DC: American Association for the Advancement of Science.zh_TW
dc.relation.reference (參考文獻) Olafson, K. M., & Ferraro, F. R. (2001). Effects of emotional state on lexical decision performance. Brain and Cognition, 45, 15-20.zh_TW
dc.relation.reference (參考文獻) Organization for Economic Co-operation and Development [OECD] (2005). PISA 2003 technical report. Paris: OECD.zh_TW