學術產出-學位論文

文章檢視/開啟

書目匯出

Google ScholarTM

政大圖書館

引文資訊

TAIR相關學術產出

題名 遺傳演算法投資策略在動態環境下的統計分析
The Statistical Analysis of GAs-Based Trading Strategies under Dynamic Landscape
作者 棗厥庸
Tsao, Chueh-Yung
貢獻者 吳柏林<br>陳樹衡
Wu, Berlin<br>Chen, Shu-Heng
棗厥庸
Tsao, Chueh-Yung
關鍵詞 遺傳演算法
投資策略
時間數列模型
Tick-by-tick資料
蒙地卡羅模擬
夏普級數
幸運係數
Genetic Algorithms
Trading Strategies
Time Series Models
Tick-by-tick Data
Monte Carlo Simulation
Sharpe Ratio
Luck Coefficient
日期 1998
上傳時間 18-九月-2009 18:27:57 (UTC+8)
摘要 本研究中,我們計算OGA演化投資策略在五類時間數列模型上之表現,這五類模型分別是線性模型、雙線性模型、自迴歸條件異質變異數模型、門檻模型以及混沌模型。我們選擇獲勝機率、累積報酬率、夏普比例以及幸運係數做為評斷表現之準則,並分別推導出其漸近統計檢定。有別於一般計算智慧在財務工程上之應用,利用蒙地卡羅模擬法,研究中將對各表現準則提出嚴格之統計檢定結果。同時在實証研究中,我們考慮歐元兌美元及美元兌日圓的tick-by-tick匯率資料。故本研究主要的重點之一,乃是對於OGA演化投資策略,於這些模擬及實証資料上的有效性應用,作了深入且廣泛的探討。
In this study, the performance of ordinary GA-based trading strategies are evaluated under five classes of time series model, namely, linear ARMA model, bilinear model, ARCH model, threshold model and chaotic model. The performance criteria employed are the winning probability, accumulated returns, Sharpe ratio and luck coefficient. We then provide the asymptotic statistical tests for these criteria. Unlike many existing applications of computational intelligence in financial engineering, for each performance criterion, we provide a rigorous statistical results based on Monte Carlo simulation. In the empirical study, two tick-by-tick foreign exchange rates are also considered, namely, EUR/USD and USD/JPY. As a result, this study provides us
     with a thorough understanding about the effectiveness of ordinary GA for evolving trading strategies under these artificial and natural time series data.
參考文獻 Arnold, S.F. (1990). Mathematical Statistics. New Jersey: Prentice Hall Inc.
Barnett, W. A., A. R. Gallant, M. J. Hinich, J. A. Jungeilges, D. T. Kaplan and M. J. Jensen (1997). ""A Single-Blind Controlled Competition Among Tests for Nonlinearity and Chaos,`` paper presented at the 1997 Far Eastern Meeting of the Econometric Society (FEMES`97), Hong Kong, July 24-26, 1997. (session 4A)
Bauer, R. J. (1994). Genetic Algorithms and Investment Strategies, John Wiley and Sons. Inc.
Bollerslev, T. P. (1986). ""Generalized AutoRegressive Conditional Heteroskedasticity,`` Journal of Econometrics, Vol. 31, 307-327.
Box, G. E. P. and Jenkings, G. M. (1976). Time Series Analysis: Forecasting and Contral, Holden-Day, San ransisco.
Brock, W. D., Dechert, J. Scheinkman, and B. LeBaron (1996). ""A Test for Independence Based on the Correlation Dimension,`` Econometric Reviews, Vol. 15, 197-235.
Chen, S.-H. (1998a). ""Evolutionary Computation in Financial Engineering: A Road Map of GAs and GP``, Financial Engineering News, Vol. 2, No. 4. Also available from the website: http://www.fenews.com/1998/v2n4/chen.pdf
Chen, S.-H., (1998b). ""Can We Believe That Genetic Algorithms Would Help without Actually Seeing Them Work in Financial Data Mining?: Part I, The Foundations,`` in L. Xu, L. W. Chan, I. King and A. Fu (eds.), Intelligent Data Engineering and Learning: Perspectives on Financial Engineering and Data Mining,} Singapore: Springer-Verlag. p. 81-87.
Chen S.-H. and C.-F. Chen (1995). ""Can GAs-based Technical Trading Rules Survive Well during the 1990-91 orld-Wide Recession? Evaluation Based on the Crash of TAIEX and NIKKEI``, in H.C. Steele and O. Yau (eds.) roceedings of International Conference on ""Global Business in Transition: Prospects for the Twenty First Century``, Vol. II, pp. 591-598. Centre for International Business (CIBS), Lingnan College, Hong Kong, Dec 14-16.
Chen, S.-H. and C.-F. Chen, (1998). ""Can We Believe That Genetic Algorithms Would Help without Actually Seeing Them Work in Financial Data Mining?: Part II, Empirical Tests,`` in L. Xu, L. W. Chan, I. King and A. Fu eds.), Intelligent Data Engineering and Learning: Perspectives on Financail Engineering and Data Ming, Singapore:
Springer-Verlag. pp. 89-97.
Chen, S.-H. and C.-F. Chen and C.-W. Tan, (1998). ""Toward an Effective Implementation of Genetic Algorithms in Financial Data Mining: Retraining plus Validating,`` in L. Xu, L. W. Chan, I. King and A. Fu (eds.), Intelligent Data Engineering and Learning: Perspectives on Financial Engineering and Data Mining, Singapore: Springer-Verlag. p. 99-105.
Chen, S.-H. and C.-F. Lu, (1999). ""Would Evolutionary Computation Help for Designs of Artificial Neural Nets in Financial Applications?`` forthcoming in Proceedings of 1999 Congress on Evolutionary Computation, IEEE Press.
Chen, S.-H. and W.-Y. Lin, (1998). ""Two Ways to Improve Genetic Algorithms in Financial Data Mining: Sell Short with Recursive GAs,`` in Proceedings of the Seventh International Conference on Information Processing and anagement of Uncertainty in Knowledge-Based Systems, Vol. II, pp. 1090-1097.
Chen, S.-H. and C.-W. Tan, (1996). ""Measuring Randomness by Rissanen`s Stochastic Complexity: Applications to
the Financial Data``, in D. L. Dowe, K. B. Korb and J. J. Oliver (eds.), ISIS: Information, Statistics and Induction in Science, World Scientific, Singapore, pp. 200-211.
Chen, S.-H. and C.-W. Tan, (1998). ""Some Evidences of the Brief Signals in Financial Times Series: An Examination based on Predictive Stochastic Complexity,`` AI-ECON Research Group Working Paper, National Chengchi University.
Dickey, D. A. and W. A. Fuller (1979). ""Distribution of the Estimators for Autoregressive Time Series with a Unit Root,`` Journal of the American Statistical Association, Vol. 74, 427-431.
Engle, R. F., (1982). ""Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of U.K Inflation,`` Econometrica, 50, 987-1008.
Goldberg, D. E., (1989). Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley.
Granger, D. W. J. and Anderson, A. P. (1978). An Introduction to Bilinear Time Series Models, Vandenhoech & Ruprecht, Gottingen and Zurich.
Holland, J. H., (1975). Adaptation in Natural and Artificial Systems, The University of Michigan Press, Ann Arbor, MI.
Jarque, C. M., and A. K. Bera (1980). ""Efficient Tests for Normality, Homoscedasticity and Serial Independence of Regression Residuals,`` Economics Letter, Vol. 6, 255-259.
Moody, J. and L. Wu (1997). ""What is the ""True Price``?-State Space Models for High Frequency FX Data,`` Proceedings of the Conference on Computational Intelligence for Financial Engineering, IEEE Press.
Muhlenbein, H. (1993). ""Evolutionary Algorithms: Theorem and Applications,`` in E. H. L. Aarts and J. K. Lenstra (Eds.), Local Search in Combination Optimization, Wiley.
Muhlenbein, H. (1994). ""The Science of Breeding and Its Application to the Breeder Genetic Algorithm BGA,`` Evoluationary Computation, Vol. 1, No. 4, 335-360.
Sharpe, W. F. (1966). ""Mutual Fund Performance,`` Journal of Business, Vol. 39, No. 1, 119-138.
Subba Rao, T. (1981). ""On the Theory of Bilinear Time Series Models,`` Journal of the Royal Statistical Society, Series B, Vol. 43, 244-255.
Subba Rao, T. and Grbr, M. M. (1980). An Introduction to Bispectral Analysis and Bilinear Time Series Models, Vol. 24 of Lecture Notes in Statistics, Springer Verlag, New York.
Tong, H., (1983). Threshold Models in Nonlinear Time Series Analysis, Vol 21 of Lecture Notes in Statistics, Springer Verlag, Heidelberg.
Wu, B. and Shih, N., (1992). ""On the Identification Problem for Bilinear Time Series Models,`` Journal of Computational Statistic Simulation}. Vol. 43, 129-161.
Zhou, B., (1996). ""High-frequency Data and Volatility in Foreign-Exchange Rate``, Journal of Business and Economic Statistics, Vol. 14, No. 1, 45-52.
描述 碩士
國立政治大學
應用數學研究所
85751002
87
資料來源 http://thesis.lib.nccu.edu.tw/record/#B2002001686
資料類型 thesis
dc.contributor.advisor 吳柏林<br>陳樹衡zh_TW
dc.contributor.advisor Wu, Berlin<br>Chen, Shu-Hengen_US
dc.contributor.author (作者) 棗厥庸zh_TW
dc.contributor.author (作者) Tsao, Chueh-Yungen_US
dc.creator (作者) 棗厥庸zh_TW
dc.creator (作者) Tsao, Chueh-Yungen_US
dc.date (日期) 1998en_US
dc.date.accessioned 18-九月-2009 18:27:57 (UTC+8)-
dc.date.available 18-九月-2009 18:27:57 (UTC+8)-
dc.date.issued (上傳時間) 18-九月-2009 18:27:57 (UTC+8)-
dc.identifier (其他 識別碼) B2002001686en_US
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/36391-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 應用數學研究所zh_TW
dc.description (描述) 85751002zh_TW
dc.description (描述) 87zh_TW
dc.description.abstract (摘要) 本研究中,我們計算OGA演化投資策略在五類時間數列模型上之表現,這五類模型分別是線性模型、雙線性模型、自迴歸條件異質變異數模型、門檻模型以及混沌模型。我們選擇獲勝機率、累積報酬率、夏普比例以及幸運係數做為評斷表現之準則,並分別推導出其漸近統計檢定。有別於一般計算智慧在財務工程上之應用,利用蒙地卡羅模擬法,研究中將對各表現準則提出嚴格之統計檢定結果。同時在實証研究中,我們考慮歐元兌美元及美元兌日圓的tick-by-tick匯率資料。故本研究主要的重點之一,乃是對於OGA演化投資策略,於這些模擬及實証資料上的有效性應用,作了深入且廣泛的探討。zh_TW
dc.description.abstract (摘要) In this study, the performance of ordinary GA-based trading strategies are evaluated under five classes of time series model, namely, linear ARMA model, bilinear model, ARCH model, threshold model and chaotic model. The performance criteria employed are the winning probability, accumulated returns, Sharpe ratio and luck coefficient. We then provide the asymptotic statistical tests for these criteria. Unlike many existing applications of computational intelligence in financial engineering, for each performance criterion, we provide a rigorous statistical results based on Monte Carlo simulation. In the empirical study, two tick-by-tick foreign exchange rates are also considered, namely, EUR/USD and USD/JPY. As a result, this study provides us
     with a thorough understanding about the effectiveness of ordinary GA for evolving trading strategies under these artificial and natural time series data.
en_US
dc.description.tableofcontents 1 Introduction and Motivation
     2 The Trading Strategies
     3 Performance Criteria and Their Statistical Tests
     4 Simulation Designs and Analysis
     5 Empirical Analysis
     6 Concluding Remarks and Future Research
zh_TW
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#B2002001686en_US
dc.subject (關鍵詞) 遺傳演算法zh_TW
dc.subject (關鍵詞) 投資策略zh_TW
dc.subject (關鍵詞) 時間數列模型zh_TW
dc.subject (關鍵詞) Tick-by-tick資料zh_TW
dc.subject (關鍵詞) 蒙地卡羅模擬zh_TW
dc.subject (關鍵詞) 夏普級數zh_TW
dc.subject (關鍵詞) 幸運係數zh_TW
dc.subject (關鍵詞) Genetic Algorithmsen_US
dc.subject (關鍵詞) Trading Strategiesen_US
dc.subject (關鍵詞) Time Series Modelsen_US
dc.subject (關鍵詞) Tick-by-tick Dataen_US
dc.subject (關鍵詞) Monte Carlo Simulationen_US
dc.subject (關鍵詞) Sharpe Ratioen_US
dc.subject (關鍵詞) Luck Coefficienten_US
dc.title (題名) 遺傳演算法投資策略在動態環境下的統計分析zh_TW
dc.title (題名) The Statistical Analysis of GAs-Based Trading Strategies under Dynamic Landscapeen_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) Arnold, S.F. (1990). Mathematical Statistics. New Jersey: Prentice Hall Inc.zh_TW
dc.relation.reference (參考文獻) Barnett, W. A., A. R. Gallant, M. J. Hinich, J. A. Jungeilges, D. T. Kaplan and M. J. Jensen (1997). ""A Single-Blind Controlled Competition Among Tests for Nonlinearity and Chaos,`` paper presented at the 1997 Far Eastern Meeting of the Econometric Society (FEMES`97), Hong Kong, July 24-26, 1997. (session 4A)zh_TW
dc.relation.reference (參考文獻) Bauer, R. J. (1994). Genetic Algorithms and Investment Strategies, John Wiley and Sons. Inc.zh_TW
dc.relation.reference (參考文獻) Bollerslev, T. P. (1986). ""Generalized AutoRegressive Conditional Heteroskedasticity,`` Journal of Econometrics, Vol. 31, 307-327.zh_TW
dc.relation.reference (參考文獻) Box, G. E. P. and Jenkings, G. M. (1976). Time Series Analysis: Forecasting and Contral, Holden-Day, San ransisco.zh_TW
dc.relation.reference (參考文獻) Brock, W. D., Dechert, J. Scheinkman, and B. LeBaron (1996). ""A Test for Independence Based on the Correlation Dimension,`` Econometric Reviews, Vol. 15, 197-235.zh_TW
dc.relation.reference (參考文獻) Chen, S.-H. (1998a). ""Evolutionary Computation in Financial Engineering: A Road Map of GAs and GP``, Financial Engineering News, Vol. 2, No. 4. Also available from the website: http://www.fenews.com/1998/v2n4/chen.pdfzh_TW
dc.relation.reference (參考文獻) Chen, S.-H., (1998b). ""Can We Believe That Genetic Algorithms Would Help without Actually Seeing Them Work in Financial Data Mining?: Part I, The Foundations,`` in L. Xu, L. W. Chan, I. King and A. Fu (eds.), Intelligent Data Engineering and Learning: Perspectives on Financial Engineering and Data Mining,} Singapore: Springer-Verlag. p. 81-87.zh_TW
dc.relation.reference (參考文獻) Chen S.-H. and C.-F. Chen (1995). ""Can GAs-based Technical Trading Rules Survive Well during the 1990-91 orld-Wide Recession? Evaluation Based on the Crash of TAIEX and NIKKEI``, in H.C. Steele and O. Yau (eds.) roceedings of International Conference on ""Global Business in Transition: Prospects for the Twenty First Century``, Vol. II, pp. 591-598. Centre for International Business (CIBS), Lingnan College, Hong Kong, Dec 14-16.zh_TW
dc.relation.reference (參考文獻) Chen, S.-H. and C.-F. Chen, (1998). ""Can We Believe That Genetic Algorithms Would Help without Actually Seeing Them Work in Financial Data Mining?: Part II, Empirical Tests,`` in L. Xu, L. W. Chan, I. King and A. Fu eds.), Intelligent Data Engineering and Learning: Perspectives on Financail Engineering and Data Ming, Singapore:zh_TW
dc.relation.reference (參考文獻) Springer-Verlag. pp. 89-97.zh_TW
dc.relation.reference (參考文獻) Chen, S.-H. and C.-F. Chen and C.-W. Tan, (1998). ""Toward an Effective Implementation of Genetic Algorithms in Financial Data Mining: Retraining plus Validating,`` in L. Xu, L. W. Chan, I. King and A. Fu (eds.), Intelligent Data Engineering and Learning: Perspectives on Financial Engineering and Data Mining, Singapore: Springer-Verlag. p. 99-105.zh_TW
dc.relation.reference (參考文獻) Chen, S.-H. and C.-F. Lu, (1999). ""Would Evolutionary Computation Help for Designs of Artificial Neural Nets in Financial Applications?`` forthcoming in Proceedings of 1999 Congress on Evolutionary Computation, IEEE Press.zh_TW
dc.relation.reference (參考文獻) Chen, S.-H. and W.-Y. Lin, (1998). ""Two Ways to Improve Genetic Algorithms in Financial Data Mining: Sell Short with Recursive GAs,`` in Proceedings of the Seventh International Conference on Information Processing and anagement of Uncertainty in Knowledge-Based Systems, Vol. II, pp. 1090-1097.zh_TW
dc.relation.reference (參考文獻) Chen, S.-H. and C.-W. Tan, (1996). ""Measuring Randomness by Rissanen`s Stochastic Complexity: Applications tozh_TW
dc.relation.reference (參考文獻) the Financial Data``, in D. L. Dowe, K. B. Korb and J. J. Oliver (eds.), ISIS: Information, Statistics and Induction in Science, World Scientific, Singapore, pp. 200-211.zh_TW
dc.relation.reference (參考文獻) Chen, S.-H. and C.-W. Tan, (1998). ""Some Evidences of the Brief Signals in Financial Times Series: An Examination based on Predictive Stochastic Complexity,`` AI-ECON Research Group Working Paper, National Chengchi University.zh_TW
dc.relation.reference (參考文獻) Dickey, D. A. and W. A. Fuller (1979). ""Distribution of the Estimators for Autoregressive Time Series with a Unit Root,`` Journal of the American Statistical Association, Vol. 74, 427-431.zh_TW
dc.relation.reference (參考文獻) Engle, R. F., (1982). ""Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of U.K Inflation,`` Econometrica, 50, 987-1008.zh_TW
dc.relation.reference (參考文獻) Goldberg, D. E., (1989). Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley.zh_TW
dc.relation.reference (參考文獻) Granger, D. W. J. and Anderson, A. P. (1978). An Introduction to Bilinear Time Series Models, Vandenhoech & Ruprecht, Gottingen and Zurich.zh_TW
dc.relation.reference (參考文獻) Holland, J. H., (1975). Adaptation in Natural and Artificial Systems, The University of Michigan Press, Ann Arbor, MI.zh_TW
dc.relation.reference (參考文獻) Jarque, C. M., and A. K. Bera (1980). ""Efficient Tests for Normality, Homoscedasticity and Serial Independence of Regression Residuals,`` Economics Letter, Vol. 6, 255-259.zh_TW
dc.relation.reference (參考文獻) Moody, J. and L. Wu (1997). ""What is the ""True Price``?-State Space Models for High Frequency FX Data,`` Proceedings of the Conference on Computational Intelligence for Financial Engineering, IEEE Press.zh_TW
dc.relation.reference (參考文獻) Muhlenbein, H. (1993). ""Evolutionary Algorithms: Theorem and Applications,`` in E. H. L. Aarts and J. K. Lenstra (Eds.), Local Search in Combination Optimization, Wiley.zh_TW
dc.relation.reference (參考文獻) Muhlenbein, H. (1994). ""The Science of Breeding and Its Application to the Breeder Genetic Algorithm BGA,`` Evoluationary Computation, Vol. 1, No. 4, 335-360.zh_TW
dc.relation.reference (參考文獻) Sharpe, W. F. (1966). ""Mutual Fund Performance,`` Journal of Business, Vol. 39, No. 1, 119-138.zh_TW
dc.relation.reference (參考文獻) Subba Rao, T. (1981). ""On the Theory of Bilinear Time Series Models,`` Journal of the Royal Statistical Society, Series B, Vol. 43, 244-255.zh_TW
dc.relation.reference (參考文獻) Subba Rao, T. and Grbr, M. M. (1980). An Introduction to Bispectral Analysis and Bilinear Time Series Models, Vol. 24 of Lecture Notes in Statistics, Springer Verlag, New York.zh_TW
dc.relation.reference (參考文獻) Tong, H., (1983). Threshold Models in Nonlinear Time Series Analysis, Vol 21 of Lecture Notes in Statistics, Springer Verlag, Heidelberg.zh_TW
dc.relation.reference (參考文獻) Wu, B. and Shih, N., (1992). ""On the Identification Problem for Bilinear Time Series Models,`` Journal of Computational Statistic Simulation}. Vol. 43, 129-161.zh_TW
dc.relation.reference (參考文獻) Zhou, B., (1996). ""High-frequency Data and Volatility in Foreign-Exchange Rate``, Journal of Business and Economic Statistics, Vol. 14, No. 1, 45-52.zh_TW