學術產出-學位論文

文章檢視/開啟

書目匯出

Google ScholarTM

政大圖書館

引文資訊

TAIR相關學術產出

題名 限制下方風險的資產配置
Controlling Downside Risk in Asset Allocation
作者 簡佳至
Chien, Chia-Chih
貢獻者 陳松男
Chen, Son-Nan
簡佳至
Chien, Chia-Chih
關鍵詞 資產配置
厚尾
Bootstrap法
下方風險
涉險值
最低報酬要求限制
Asset Allocation
Fat-tail
Bootstrap
Downside Risk
Value at Risk
Shortfall Constraint
日期 2000
上傳時間 18-九月-2009 19:19:46 (UTC+8)
摘要 由於許多資產報酬率的分配呈現厚尾的現象,因此,本文探討將最低報酬要求限制條件加入傳統的平均數╱變異數模型中,考慮在分配已知的情形下,假設資產報酬率的分配為t分配及常態分配,來求取最適的資產配置;在分配未知的情形下,利用古典Bootstrap法、移動區塊Bootstrap法及定態Bootstrap法的抽樣方法來模擬資產報酬率的分配形式,並利用模擬的資產報酬率分配求出最適的資產配置。
     同時,本文亦探討資產配置在風險管理上的運用,當分配已知時,若對分配參數的估計正確,則使用的最低要求報酬率就是此資產配置的涉險值,反之,若對參數的估計錯誤時,會對資產配置產生很大的影響及風險管理上的不正確;當分配未知時,利用模擬方法來產生分配,則使用的最低要求報酬率可看成是此資產配置的涉險值。
     實證部分選取資料分成本國及全球,研究發現對於何種分配或模擬方法的資產配置績效最好?沒有一定的結論。其原因是各種分配或模擬方法皆必須視資料的性質而定,因此,本論文的貢獻僅在建議使用厚尾分配及利用模擬方法,來符合資產報酬率呈現厚尾的現象,並利用此分配,以期在考慮最低報酬要求限制條件下的資產配置更為精確。
The distributions of many asset returns tend to be fat-tail. This paper attempts to add the shortfall constraint in Mean-Variance Analysis. When the distribution is known, we find the optimal asset allocation under student-t distribution and normal distribution. On the other hand, we use Classical Bootstrap, Moving Block Bootstrap, and Stationary Bootstrap to stimulate the distribution of asset return, and to obtain the optimal asset allocation.
     We also examine the risk management of asset allocation. When we use the correct estimators of parameters under the known distribution, the threshold in shortfall constraint is the value-at-risk in asset allocation. Otherwise, if using the wrong estimators, we get the incorrect asset allocation and the improper risk management. When the distribution is unknown, using simulation to generate the distribution, the value-at-risk is the threshold.
     The empirical study is conducted in two parts, domestic and global asset allocation. The results cannot point out which distributions and simulations are suitable. They depend on the data’s property. The contribution of this paper is to introduce some methods to fit the fat-tail behavior of asset return in asset allocation.
參考文獻 中文部分
1.陳松男,「全球化投資動態分析(上、下冊)」,台北金融研究發展基金會,民國八十四年六月。
2.陳松男,「現代投資學」,新陸書局,民國八十六年七月。
3.陳松男,「財務經濟學」,華泰書局,民國八十七年五月。
4.張雅惠,「應用風險值評估共同基金之績效」,國立政治大學金融學系研究所碩士論文,民國八十九年六月。
5.江義玄,「投資組合之風險評價:新模擬方法的運用」,國立政治大學企業管理研究所研士論文,民國八十九年六月。
6.游欣慧,「多種情境模式資產配置之研究」,國立台灣大學財務金融研究所碩士論文,民國八十八年六月。
7.閔志清,「台灣基金資產配置之研究」,國立台灣大學財務金融研究所碩士論文,民國八十六年六月。
8.齊仁勇,「國際資產配置與匯率風險之探討」,國立台灣大學商學研究所碩士論文,民國八十五年六月。
英文部分
1.Abramowitz, M., and I.A. Stegun. Handbook of Mathematical Functions. NEW York: Dover Publication, 1970.
2.Bawa, V., and E.B. Lindenberg. “Capital Market Equilibrium in a Mean, Lower Partial Moment Framework.” Journal of Financial Economics, November 1977.
3.Blattberg, R.C.and N.J. Gonedes.“A Comparison of the Stable and Student Distribution as Statistical Models for Stock Prices.” Journal of Business, 1974, pp. 244-280.
4.Campbell, J.Y., A.W. Lo, and A.C. MacKinlay. The Econometrics of Financial Markets. Princeton: Princeton University Press, 1997.
5.Chopra, V.K., and W.T. Ziemba. “The Effect of Errors in Means, Variances, and Covariances on Optimal Portfolio Choice.” Journal of Portfolio Management, 19 (1993), pp. 6-11.
6.de Vries, C.G. “Stylized Facts of Nominal Exchange Rate Return.” in F. van der Ploeg (ed.), The Handbook of international Macroeconomics. Cambridge: Blackwell, 1994, pp. 348-389.
7.Efron, B. “Bootstrap methods: Another look at the jackknife.” Annals of Statistics 7, 1979, pp. 1-26.
8.Efron, B., and Tibshirani, An Introduction to the Bootstrap, New York: Chapman & Hall, 1993.
9.Harlow, W.V., and R. Rao. “Asset Pricing in a Generalized Mean-Lower Partial Moment Framework: Theory and Evidence.” Journal of Financial and Quantitative Analysis, September 1989.
10.Jorion, P. “Risk2: Measuring the Risk in Value at Risk.” Financial Analysts Journal, November/December 1996, pp. 47-56.
11.Jorion, P. Value at Risk: The New Benchmark for Managing Financial Risk, (2nd ed.), McGraw-Hill, 2000.
12.Kunsch, H.R. “The Jackknife and the Bootstrap for General Stationary Observations.” The Annals of Statistics 34, 1989, pp.1217-1241.
13.Leibowitz, M.L., and Terence C. Langeteig. “Shortfall Risk and the Asset Allocation Decision: A Simulation Analysis of Stock and Bond Risk Profiles.”Journal of Portfolio Management, Fall 1989.
14.Leibowitz, M.L., S. Kogelman, and Thomas E. Klaffky. “A Shortfall Approach to Duration Management.” New York: Salomon Brothers Inc, 1990.
15.Leibowitz, M.L., and S. Kogelman. “Asset Allocation under Shortfall Constraints.” Journal of Portfolio Management, winter 1991, pp. 18-23.
16.Leibowitz, M.L., S. Kogelman, and L.N. Bader. “Asset Performance and Surplu7s Control: A Dual Shortfall Approach.” Journal of Portfolio Management, winter 1992, pp. 28-37.
17.Leibowitz, M.L., L.N. Bader, S.Kogelman. Return Targets And Shortfall Risks: Studies in Strategic Asset Allocation. IRWIN, 1996.
18.Liu, R. Y., and Singh, K. “Moving Blocks Jackknife and Bootstrap Capture Weak Dependence.” Exploring the Limits of Bootstrap, eds. R. LePage and L. Billard, New York: John Wiley, 1992.
19.Lucas, A., and P. Klaassen. “Extreme Returns, Downside Risk, and Optimal Asset Allocation.” Journal of portfolio management, Fall 1998.
20.Politis, D., and Romano, J. “A Genernal Resampling Scheme for Triangular Arrays of α-Mixing Random Variables with Application to the Problem of Spectral Density Estimation.” The Annals of Statistics 20, 1992,pp.1985-2007.
21.Politis, D., and Romano, J. “A Circular Block Resampling Procedure for Stationary Data.” Exploring the Limits of Bootstrap, eds. R. LePage and L. Billard, New York: John Wiley, 1992.
22.Politis, D., and Romano, J. “The Stationary Bootstrap.” Journal of the American Statistical Association, 1994, pp.1303 1313.
23.Praetz, P.D. “The Distribution of Share Price Changes.” Journal of Business 45, 1972, pp. 49-55.
24.Sharp, William F., and Lawrence G. Tint. “Liabilities: A New Approach.”Journal of Portfolio Management, Winter 1990.
描述 碩士
國立政治大學
金融研究所
88352009
89
資料來源 http://thesis.lib.nccu.edu.tw/record/#A2002001537
資料類型 thesis
dc.contributor.advisor 陳松男zh_TW
dc.contributor.advisor Chen, Son-Nanen_US
dc.contributor.author (作者) 簡佳至zh_TW
dc.contributor.author (作者) Chien, Chia-Chihen_US
dc.creator (作者) 簡佳至zh_TW
dc.creator (作者) Chien, Chia-Chihen_US
dc.date (日期) 2000en_US
dc.date.accessioned 18-九月-2009 19:19:46 (UTC+8)-
dc.date.available 18-九月-2009 19:19:46 (UTC+8)-
dc.date.issued (上傳時間) 18-九月-2009 19:19:46 (UTC+8)-
dc.identifier (其他 識別碼) A2002001537en_US
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/36702-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 金融研究所zh_TW
dc.description (描述) 88352009zh_TW
dc.description (描述) 89zh_TW
dc.description.abstract (摘要) 由於許多資產報酬率的分配呈現厚尾的現象,因此,本文探討將最低報酬要求限制條件加入傳統的平均數╱變異數模型中,考慮在分配已知的情形下,假設資產報酬率的分配為t分配及常態分配,來求取最適的資產配置;在分配未知的情形下,利用古典Bootstrap法、移動區塊Bootstrap法及定態Bootstrap法的抽樣方法來模擬資產報酬率的分配形式,並利用模擬的資產報酬率分配求出最適的資產配置。
     同時,本文亦探討資產配置在風險管理上的運用,當分配已知時,若對分配參數的估計正確,則使用的最低要求報酬率就是此資產配置的涉險值,反之,若對參數的估計錯誤時,會對資產配置產生很大的影響及風險管理上的不正確;當分配未知時,利用模擬方法來產生分配,則使用的最低要求報酬率可看成是此資產配置的涉險值。
     實證部分選取資料分成本國及全球,研究發現對於何種分配或模擬方法的資產配置績效最好?沒有一定的結論。其原因是各種分配或模擬方法皆必須視資料的性質而定,因此,本論文的貢獻僅在建議使用厚尾分配及利用模擬方法,來符合資產報酬率呈現厚尾的現象,並利用此分配,以期在考慮最低報酬要求限制條件下的資產配置更為精確。
zh_TW
dc.description.abstract (摘要) The distributions of many asset returns tend to be fat-tail. This paper attempts to add the shortfall constraint in Mean-Variance Analysis. When the distribution is known, we find the optimal asset allocation under student-t distribution and normal distribution. On the other hand, we use Classical Bootstrap, Moving Block Bootstrap, and Stationary Bootstrap to stimulate the distribution of asset return, and to obtain the optimal asset allocation.
     We also examine the risk management of asset allocation. When we use the correct estimators of parameters under the known distribution, the threshold in shortfall constraint is the value-at-risk in asset allocation. Otherwise, if using the wrong estimators, we get the incorrect asset allocation and the improper risk management. When the distribution is unknown, using simulation to generate the distribution, the value-at-risk is the threshold.
     The empirical study is conducted in two parts, domestic and global asset allocation. The results cannot point out which distributions and simulations are suitable. They depend on the data’s property. The contribution of this paper is to introduce some methods to fit the fat-tail behavior of asset return in asset allocation.
en_US
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#A2002001537en_US
dc.subject (關鍵詞) 資產配置zh_TW
dc.subject (關鍵詞) 厚尾zh_TW
dc.subject (關鍵詞) Bootstrap法zh_TW
dc.subject (關鍵詞) 下方風險zh_TW
dc.subject (關鍵詞) 涉險值zh_TW
dc.subject (關鍵詞) 最低報酬要求限制zh_TW
dc.subject (關鍵詞) Asset Allocationen_US
dc.subject (關鍵詞) Fat-tailen_US
dc.subject (關鍵詞) Bootstrapen_US
dc.subject (關鍵詞) Downside Risken_US
dc.subject (關鍵詞) Value at Risken_US
dc.subject (關鍵詞) Shortfall Constrainten_US
dc.title (題名) 限制下方風險的資產配置zh_TW
dc.title (題名) Controlling Downside Risk in Asset Allocationen_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) 中文部分zh_TW
dc.relation.reference (參考文獻) 1.陳松男,「全球化投資動態分析(上、下冊)」,台北金融研究發展基金會,民國八十四年六月。zh_TW
dc.relation.reference (參考文獻) 2.陳松男,「現代投資學」,新陸書局,民國八十六年七月。zh_TW
dc.relation.reference (參考文獻) 3.陳松男,「財務經濟學」,華泰書局,民國八十七年五月。zh_TW
dc.relation.reference (參考文獻) 4.張雅惠,「應用風險值評估共同基金之績效」,國立政治大學金融學系研究所碩士論文,民國八十九年六月。zh_TW
dc.relation.reference (參考文獻) 5.江義玄,「投資組合之風險評價:新模擬方法的運用」,國立政治大學企業管理研究所研士論文,民國八十九年六月。zh_TW
dc.relation.reference (參考文獻) 6.游欣慧,「多種情境模式資產配置之研究」,國立台灣大學財務金融研究所碩士論文,民國八十八年六月。zh_TW
dc.relation.reference (參考文獻) 7.閔志清,「台灣基金資產配置之研究」,國立台灣大學財務金融研究所碩士論文,民國八十六年六月。zh_TW
dc.relation.reference (參考文獻) 8.齊仁勇,「國際資產配置與匯率風險之探討」,國立台灣大學商學研究所碩士論文,民國八十五年六月。zh_TW
dc.relation.reference (參考文獻) 英文部分zh_TW
dc.relation.reference (參考文獻) 1.Abramowitz, M., and I.A. Stegun. Handbook of Mathematical Functions. NEW York: Dover Publication, 1970.zh_TW
dc.relation.reference (參考文獻) 2.Bawa, V., and E.B. Lindenberg. “Capital Market Equilibrium in a Mean, Lower Partial Moment Framework.” Journal of Financial Economics, November 1977.zh_TW
dc.relation.reference (參考文獻) 3.Blattberg, R.C.and N.J. Gonedes.“A Comparison of the Stable and Student Distribution as Statistical Models for Stock Prices.” Journal of Business, 1974, pp. 244-280.zh_TW
dc.relation.reference (參考文獻) 4.Campbell, J.Y., A.W. Lo, and A.C. MacKinlay. The Econometrics of Financial Markets. Princeton: Princeton University Press, 1997.zh_TW
dc.relation.reference (參考文獻) 5.Chopra, V.K., and W.T. Ziemba. “The Effect of Errors in Means, Variances, and Covariances on Optimal Portfolio Choice.” Journal of Portfolio Management, 19 (1993), pp. 6-11.zh_TW
dc.relation.reference (參考文獻) 6.de Vries, C.G. “Stylized Facts of Nominal Exchange Rate Return.” in F. van der Ploeg (ed.), The Handbook of international Macroeconomics. Cambridge: Blackwell, 1994, pp. 348-389.zh_TW
dc.relation.reference (參考文獻) 7.Efron, B. “Bootstrap methods: Another look at the jackknife.” Annals of Statistics 7, 1979, pp. 1-26.zh_TW
dc.relation.reference (參考文獻) 8.Efron, B., and Tibshirani, An Introduction to the Bootstrap, New York: Chapman & Hall, 1993.zh_TW
dc.relation.reference (參考文獻) 9.Harlow, W.V., and R. Rao. “Asset Pricing in a Generalized Mean-Lower Partial Moment Framework: Theory and Evidence.” Journal of Financial and Quantitative Analysis, September 1989.zh_TW
dc.relation.reference (參考文獻) 10.Jorion, P. “Risk2: Measuring the Risk in Value at Risk.” Financial Analysts Journal, November/December 1996, pp. 47-56.zh_TW
dc.relation.reference (參考文獻) 11.Jorion, P. Value at Risk: The New Benchmark for Managing Financial Risk, (2nd ed.), McGraw-Hill, 2000.zh_TW
dc.relation.reference (參考文獻) 12.Kunsch, H.R. “The Jackknife and the Bootstrap for General Stationary Observations.” The Annals of Statistics 34, 1989, pp.1217-1241.zh_TW
dc.relation.reference (參考文獻) 13.Leibowitz, M.L., and Terence C. Langeteig. “Shortfall Risk and the Asset Allocation Decision: A Simulation Analysis of Stock and Bond Risk Profiles.”Journal of Portfolio Management, Fall 1989.zh_TW
dc.relation.reference (參考文獻) 14.Leibowitz, M.L., S. Kogelman, and Thomas E. Klaffky. “A Shortfall Approach to Duration Management.” New York: Salomon Brothers Inc, 1990.zh_TW
dc.relation.reference (參考文獻) 15.Leibowitz, M.L., and S. Kogelman. “Asset Allocation under Shortfall Constraints.” Journal of Portfolio Management, winter 1991, pp. 18-23.zh_TW
dc.relation.reference (參考文獻) 16.Leibowitz, M.L., S. Kogelman, and L.N. Bader. “Asset Performance and Surplu7s Control: A Dual Shortfall Approach.” Journal of Portfolio Management, winter 1992, pp. 28-37.zh_TW
dc.relation.reference (參考文獻) 17.Leibowitz, M.L., L.N. Bader, S.Kogelman. Return Targets And Shortfall Risks: Studies in Strategic Asset Allocation. IRWIN, 1996.zh_TW
dc.relation.reference (參考文獻) 18.Liu, R. Y., and Singh, K. “Moving Blocks Jackknife and Bootstrap Capture Weak Dependence.” Exploring the Limits of Bootstrap, eds. R. LePage and L. Billard, New York: John Wiley, 1992.zh_TW
dc.relation.reference (參考文獻) 19.Lucas, A., and P. Klaassen. “Extreme Returns, Downside Risk, and Optimal Asset Allocation.” Journal of portfolio management, Fall 1998.zh_TW
dc.relation.reference (參考文獻) 20.Politis, D., and Romano, J. “A Genernal Resampling Scheme for Triangular Arrays of α-Mixing Random Variables with Application to the Problem of Spectral Density Estimation.” The Annals of Statistics 20, 1992,pp.1985-2007.zh_TW
dc.relation.reference (參考文獻) 21.Politis, D., and Romano, J. “A Circular Block Resampling Procedure for Stationary Data.” Exploring the Limits of Bootstrap, eds. R. LePage and L. Billard, New York: John Wiley, 1992.zh_TW
dc.relation.reference (參考文獻) 22.Politis, D., and Romano, J. “The Stationary Bootstrap.” Journal of the American Statistical Association, 1994, pp.1303 1313.zh_TW
dc.relation.reference (參考文獻) 23.Praetz, P.D. “The Distribution of Share Price Changes.” Journal of Business 45, 1972, pp. 49-55.zh_TW
dc.relation.reference (參考文獻) 24.Sharp, William F., and Lawrence G. Tint. “Liabilities: A New Approach.”Journal of Portfolio Management, Winter 1990.zh_TW