dc.contributor.advisor | 劉惠美 | zh_TW |
dc.contributor.advisor | Liu, Hui mei | en_US |
dc.contributor.author (作者) | 邱嬿燁 | zh_TW |
dc.contributor.author (作者) | Chiou, Yan ya | en_US |
dc.creator (作者) | 邱嬿燁 | zh_TW |
dc.creator (作者) | Chiou, Yan ya | en_US |
dc.date (日期) | 2007 | en_US |
dc.date.accessioned | 18-九月-2009 20:10:02 (UTC+8) | - |
dc.date.available | 18-九月-2009 20:10:02 (UTC+8) | - |
dc.date.issued (上傳時間) | 18-九月-2009 20:10:02 (UTC+8) | - |
dc.identifier (其他 識別碼) | G0095354007 | en_US |
dc.identifier.uri (URI) | https://nccur.lib.nccu.edu.tw/handle/140.119/36923 | - |
dc.description (描述) | 碩士 | zh_TW |
dc.description (描述) | 國立政治大學 | zh_TW |
dc.description (描述) | 統計研究所 | zh_TW |
dc.description (描述) | 95354007 | zh_TW |
dc.description (描述) | 96 | zh_TW |
dc.description.abstract (摘要) | 依據之前的文獻研究,市場上主要是在LHP (Large Homogeneous Portfolio) 假設下利用單因子常態關聯結構模式(One factor double Gaussian copula model) 評價擔保債權憑證 (Collateralized debt obligation, CDO)。但這會造成擔保債權憑證的評價與市場報價的差距過大,且會造成base correlation偏斜的情況。Kalemanova et al. (2007) 提出用Normal inverse Gaussian (NIG) 取代常態分配評價擔保債權憑證,此模型不但計算快速而且可以準確估計權益分券 (equity tranche) 的價格,但是它也過於高估了其它的分券的價格。在本文中使用多變量封閉常態分配(Closed skew normal, 簡稱CSN) 分配取代NIG分配作擔保債權憑證分券的評價,CSN分配具有常態分配的性質,其線性組合仍具有封閉性的特質,且具有較多的參數以控制分配的偏態與峰態。但是與單因子常態關聯結構模式相同,多變量封閉常態分配的單因子關聯結構模式仍然無法估計的很準確,僅有在最高等級分券(senior tranche)的評價上有明顯的改進。因此在本文中我們使用NIG與CSN複合分配之單因子關聯結構模式評價擔保債權憑證分券,在實例分析時得到極佳的評價結果,並且比單因子常態關聯結構模型具有更多的的參數以使模型更符合實際的需求。 | zh_TW |
dc.description.abstract (摘要) | This article extends the Large Homogeneous Portfolio (LHP) and one factor double Gaussian copula approach for pricing CDOs. In the literature, the one factor double Gaussian copula model under LHP assumption fails to fit the prices of CDO tranches, moreover, it leads to the implied base correlation skew. Some researchers proposed using one factor double NIG copula model to price CDO tranches. It not only economizes on time but also fits the equity tranches exactly, but NIG models do not price other tranches well simultaneously. On the other hand, we substitute the NIG distribution with the Closed Skew normal (CSN) distribution. This family also has properties similar to the normal distribution, which is closure under convolution, and has extra parameters to control the shape. By using this model we get a better fit in the senior tranches, but it seriously overprices subordinate tranches. Thus we consider a mixture distribution of NIG and CSN distributions. The employments of this mixture distribution are comparatively well, and furthermore it brings more flexibility to the dependence structure. | en_US |
dc.description.tableofcontents | Chapter 1 Introductions 11.1. What Does Asset Securitization Means? 21.2. Collateralized Debt Obligations 31.2.1. Synthetic CDOs 41.3. Credit Default Swaps 51.3.1. Credit Default Swaps Index 5Chapter 2 Literature Review 82.1. Binomial Expansion Technique (BET) 82.2. Copula Model 92.3. One Factor Copula Model 92.4. Normal Inverse Gaussian Distribution 112.5. Closed Skew Normal Distribution 11Chapter 3 One Factor Double NIG Copula Model for Pricing CDOs 133.1. The Loss Distribution and Fair CDO Premium 133.2. Copula Method 153.3. One Factor Copula Model 173.4. Main Properties of the NIG Distribution 183.5. LHP Approximation in the One Factor Double NIG Copula Method 21Chapter 4 One Factor Double Mixture Distribution Copula Models for Pricing CDOs 244.1. The Introduction of Closed Skew Normal Distribution 244.2. One Factor Double CSN Copula Model 294.3. One Factor Double Mixture Distribution of NIG and CSN Distribution Copula Model 34Chapter 5 Numerical Results: Pricing the DJ iTraxx 365.1. Price iTraxx Tranches with the Four Models 365.2. The Loss Distributions for Four Models 385.3. Comparison of the Compound and Base Correlation 415.4. Conclusion 43References 45Appendix 48 | zh_TW |
dc.format.extent | 48454 bytes | - |
dc.format.extent | 71271 bytes | - |
dc.format.extent | 68301 bytes | - |
dc.format.extent | 30454 bytes | - |
dc.format.extent | 64107 bytes | - |
dc.format.extent | 44884 bytes | - |
dc.format.extent | 109214 bytes | - |
dc.format.extent | 151076 bytes | - |
dc.format.extent | 113388 bytes | - |
dc.format.extent | 31095 bytes | - |
dc.format.extent | 59789 bytes | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | en_US | - |
dc.source.uri (資料來源) | http://thesis.lib.nccu.edu.tw/record/#G0095354007 | en_US |
dc.subject (關鍵詞) | 擔保債權憑證 | zh_TW |
dc.subject (關鍵詞) | 單因子關聯結構模式 | zh_TW |
dc.subject (關鍵詞) | 多變量封閉常態分配 | zh_TW |
dc.subject (關鍵詞) | 複合分配 | zh_TW |
dc.subject (關鍵詞) | collateralized debt obligation | en_US |
dc.subject (關鍵詞) | one factor copula model | en_US |
dc.subject (關鍵詞) | closed skew normal distribution | en_US |
dc.subject (關鍵詞) | mixture distribution | en_US |
dc.title (題名) | 探討單因子複合分配關聯結構模型之擔保債權憑證之評價 | zh_TW |
dc.title (題名) | Pricing CDOs with One Factor Double Mixture Distribution Copula Model | en_US |
dc.type (資料類型) | thesis | en |
dc.relation.reference (參考文獻) | 1. Amato, J.D. and Gyntelberg, J. (March 2005). CDS Index Tranches and The Pricing of Credit Risk Correlations. BIS Quarterly Review. | zh_TW |
dc.relation.reference (參考文獻) | 2. Andersen, L., and Sidenius, J. (2004 winter). “Extensions to the Gaussian Copula: Random Recovery and Random Factor Loadings.” Journal of Credit Risk, Vol. 1, pp. 29-71. | zh_TW |
dc.relation.reference (參考文獻) | 3. Arellano-Valle, R.B., Gómez, H.W. and Quintana, F. A. (2004). “A New Class of Skew-Normal Distributions.” Communications in Statistics-Theory and Methods, Vol. 33, pp.1465-1480. | zh_TW |
dc.relation.reference (參考文獻) | 4. Azzalini, A. (2005). “The Skew-normal Distribution and Related Multivariate Families.” Scandinavian Journal of Statistics, Vol. 32, pp.159-188. | zh_TW |
dc.relation.reference (參考文獻) | 5. Barndorff-Nielsen, O.E. (1997). “Normal Inverse Gaussian Distributions and Stochastic Volatility Modeling.” Scandinavian Journal of Statistics, Vol. 24, pp.1-13. | zh_TW |
dc.relation.reference (參考文獻) | 6. Burtschell, X., Gregory, J. and Laurent, L.-P. (April 2005). A Comparative Analysis of CDO Pricing Models. Working paper. | zh_TW |
dc.relation.reference (參考文獻) | 7. Cifuentes, A. and O’Connor, G. (December 1996). The Binomial Expectation Method applied to CBO/CLO analysis. Moody’s Special Report. | zh_TW |
dc.relation.reference (參考文獻) | 8. Dezhong, W. Rachev S.T., Fabozzi F.J. (October 2006). Pricing Tranches of a CDO and a CDS Index: Resent Advances and Future Research. Working paper. | zh_TW |
dc.relation.reference (參考文獻) | 9. Dezhong W., Rachev S.T., Fabozzi F.J. (November 2006). Pricing of Credit Default Index Swap Tranches with One-Factor Heavy-Tailed Copula Models. Working paper. | zh_TW |
dc.relation.reference (參考文獻) | 10. Embrechts, P., Lindskog, F. and McNeil, A. (September 2001). Modelling Dependence with Copulas and Applications to Risk Management. Working paper. | zh_TW |
dc.relation.reference (參考文獻) | 11. González-Farías, G., Domínguez-Molina, J.A. and Gupta, A.K. (2004). “Additive properties of skew normal random vectors.” Journal of Statistical Planning and Inference, Vol. 126, pp. 521-534. | zh_TW |
dc.relation.reference (參考文獻) | 12. González-Farías, G., Domínguez-Molina, J.A. and Gupta, A.K. (2004). “A multivariate skew normal distribution.” Journal of Multivariate Analysis, Vol. 89, pp.181-190. | zh_TW |
dc.relation.reference (參考文獻) | 13. Hull, J. Options, Futures, and Other Derivatives. Pearson International. Sixth Edition. | zh_TW |
dc.relation.reference (參考文獻) | 14. Hull, J. and White, A. (winter 2004) “Valuation of a CDO and an n-th to Default CDS without Monte Carlo Simulation.” The Journal of Derivatives, Vol. 12, pp. 8-23. | zh_TW |
dc.relation.reference (參考文獻) | 15. Garcia, J., Dwyspelaere, T., Leonard, L. Alderweireld, T. and Van Gestel, T. (January 2005). Comparing BET and Copulas for Cash Flows CDO. Working Paper. | zh_TW |
dc.relation.reference (參考文獻) | 16. Garcia, J., Gielens, G., Leonard, L. and Van Gestel, T. (June 2003). Pricing Baskets Using Gaussian Copula and BET Methodology: A Market Test. Working Paper. | zh_TW |
dc.relation.reference (參考文獻) | 17. Kalemanove, A., Schmid, B., and Werner, R. (spring 2007). “The Normal Inverse Gaussian Distribution for Synthetic CDO pricing.” The Journal of Derivatives, Vol. 14, pp. 80-93. | zh_TW |
dc.relation.reference (參考文獻) | 18. Karlis, D. and Papadimitriou, A. (2004). Inference for the Multivariate Normal Inverse Gaussian Model. Working paper. | zh_TW |
dc.relation.reference (參考文獻) | 19. Li, D.X. (April 2000). On Default Correlation: A Copula Function Approach. Working Paper. | zh_TW |
dc.relation.reference (參考文獻) | 20. Lüscher, A. (December 2005). Synthetic CDO Pricing Using the Double Normal Inverse Gaussian Copula with Stochastic Factor Loadings. Master’s thesis in Zürich University. | zh_TW |
dc.relation.reference (參考文獻) | 21. McGinty, L., Ahluwaila, R., Watts, M. and Beinstein, E. (2004). Introducing Base Correlation. JP Morgan Credit Derivatives Strategy. | zh_TW |
dc.relation.reference (參考文獻) | 22. McGinty, L., Ahluwaila, R., Watts, M. and Beinstein, E. (2004a). Credit Correlation: A Guide. JP Morgan Credit Derivatives Strategy. | zh_TW |
dc.relation.reference (參考文獻) | 23. Maria, F. (July 2007). Implied Correlation Smile. Master’s thesis in Humboldt University. | zh_TW |
dc.relation.reference (參考文獻) | 24. Nelsen, R.B. (2005). An Introduction to Copulas. Springer. Second Edition. | zh_TW |
dc.relation.reference (參考文獻) | 25. O’kane, D., and Livesey, M. (2001). Modeling Credit: Theory and Practice. Quantitative Credit Research, Lehman Brothers. | zh_TW |
dc.relation.reference (參考文獻) | 26. O’kane, D., and Livesey, M. (2004). Base Correlation Explained. Quantitative Credit Research, Lehman Brothers. | zh_TW |
dc.relation.reference (參考文獻) | 27. Willemann, S. (2004). An Evaluation of the Base Correlation Framework for Synthetic CDOs. Working Paper. | zh_TW |
dc.relation.reference (參考文獻) | 28. Torresetti, R., Brigo, D., Pallavicini, A. (November 2006). Implied correlation in CDO tranches: a Paradigm to be handled with care. Working Paper. | zh_TW |
dc.relation.reference (參考文獻) | 29. Vasicek, O. (2002). “Loan Portfolio Value.” Risk, Vol. 12, pp. 160-162. | zh_TW |