學術產出-學位論文

題名 兩種正則化方法用於假設檢定與判別分析時之比較
A comparison between two regularization methods for discriminant analysis and hypothesis testing
作者 李登曜
Li, Deng-Yao
貢獻者 黃子銘
Huang, Tzee-Ming
李登曜
Li, Deng-Yao
關鍵詞 脊迴歸
正則化
交叉驗證
排列檢定
概似比檢定
判別分析
Ridge regression
Regularization
Cross-validation
Permutation test
Likelihood ration test
Discriminant analysis
日期 2008
上傳時間 18-九月-2009 20:10:59 (UTC+8)
摘要 在統計學上,高維度常造成許多分析上的問題,如進行多變量迴歸的假設檢定時,當樣本個數小於樣本維度時,其樣本共變異數矩陣之反矩陣不存在,使得檢定無法進行,本文研究動機即為在進行兩群多維常態母體的平均數檢定時,所遇到的高維度問題,並引發在分類上的研究,試圖尋找解決方法。本文研究目的為在兩種不同的正則化方法中,比較何者在檢定與分類上表現較佳。本文研究方法為以 Warton 與 Friedman 的正則化方法來分別進行檢定與分類上的分析,根據其檢定力與分類錯誤的表現來判斷何者較佳。由分析結果可知,兩種正則化方法並沒有絕對的優劣,須視母體各項假設而定。
High dimensionality causes many problems in statistical analysis. For instance, consider the testing of hypotheses about multivariate regression models. Suppose that the dimension of the multivariate response is larger than the number of observations, then the sample covariance matrix is not invertible. Since the inverse of the sample covariance matrix is often needed when computing the usual likelihood ratio test statistic (under normality), the matrix singularity makes it difficult to implement the test . The singularity of the sample covariance matrix is also a problem in classification when the linear discriminant analysis (LDA) or the quadratic discriminant analysis (QDA) is used.

Different regularization methods have been proposed to deal with the singularity of the sample covariance matrix for different purposes. Warton (2008) proposed a regularization procedure for testing, and Friedman (1989) proposed a regularization procedure for classification. Is it true that Warton`s regularization works better for testing and Friedman`s regularization works better for classification? To answer this question, some simulation studies are conducted and the results are presented in this thesis.
It is found that neither regularization method is superior to the other.
參考文獻 [1] M.J. Daniels and R.E. Kass. Shrinkage estimators for covariance matrices. Biometrics, 57(4):1173-1184,2001.
[2] J.H. Friedman. Regularized discriminant analysis. Journal of the American Statistical Association, 84(405):165-175,1989.
[3] J.P. Hoffbeck and D.A, Landgrebe. Covariance matrix estimator and classification with limited training data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(7):763-767, 1996.
[4] W.J. Krzanowski, P. Jonathan, W.V. McCarthy, and M.R. Thomas. Discriminant analysis with singular matrices:method and applications to spectroscopic data. Applied Statistics, 44(1):101-115, 1995.
[5] D.M. Titterington. Common structure of smoothing techniques in statistics. International Statistical Review, 53(2):141-170, 1985.
[6] D.I. Warton. Penalized normal likelihood and ridge regularization of correlation and covariance matrices. Journal of the American Statistical Association, 103(481):340-349, 2008.
描述 碩士
國立政治大學
統計研究所
96354019
97
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0096354019
資料類型 thesis
dc.contributor.advisor 黃子銘zh_TW
dc.contributor.advisor Huang, Tzee-Mingen_US
dc.contributor.author (作者) 李登曜zh_TW
dc.contributor.author (作者) Li, Deng-Yaoen_US
dc.creator (作者) 李登曜zh_TW
dc.creator (作者) Li, Deng-Yaoen_US
dc.date (日期) 2008en_US
dc.date.accessioned 18-九月-2009 20:10:59 (UTC+8)-
dc.date.available 18-九月-2009 20:10:59 (UTC+8)-
dc.date.issued (上傳時間) 18-九月-2009 20:10:59 (UTC+8)-
dc.identifier (其他 識別碼) G0096354019en_US
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/36929-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 統計研究所zh_TW
dc.description (描述) 96354019zh_TW
dc.description (描述) 97zh_TW
dc.description.abstract (摘要) 在統計學上,高維度常造成許多分析上的問題,如進行多變量迴歸的假設檢定時,當樣本個數小於樣本維度時,其樣本共變異數矩陣之反矩陣不存在,使得檢定無法進行,本文研究動機即為在進行兩群多維常態母體的平均數檢定時,所遇到的高維度問題,並引發在分類上的研究,試圖尋找解決方法。本文研究目的為在兩種不同的正則化方法中,比較何者在檢定與分類上表現較佳。本文研究方法為以 Warton 與 Friedman 的正則化方法來分別進行檢定與分類上的分析,根據其檢定力與分類錯誤的表現來判斷何者較佳。由分析結果可知,兩種正則化方法並沒有絕對的優劣,須視母體各項假設而定。zh_TW
dc.description.abstract (摘要) High dimensionality causes many problems in statistical analysis. For instance, consider the testing of hypotheses about multivariate regression models. Suppose that the dimension of the multivariate response is larger than the number of observations, then the sample covariance matrix is not invertible. Since the inverse of the sample covariance matrix is often needed when computing the usual likelihood ratio test statistic (under normality), the matrix singularity makes it difficult to implement the test . The singularity of the sample covariance matrix is also a problem in classification when the linear discriminant analysis (LDA) or the quadratic discriminant analysis (QDA) is used.

Different regularization methods have been proposed to deal with the singularity of the sample covariance matrix for different purposes. Warton (2008) proposed a regularization procedure for testing, and Friedman (1989) proposed a regularization procedure for classification. Is it true that Warton`s regularization works better for testing and Friedman`s regularization works better for classification? To answer this question, some simulation studies are conducted and the results are presented in this thesis.
It is found that neither regularization method is superior to the other.
en_US
dc.description.tableofcontents 1 緒論....................................................8
1.1 研究動機.............................................8
1.2 研究目的.............................................9
2 文獻回顧與背景介紹.......................................10
3 研究方法................................................13
3.1 Warton 在檢定上的正則化方法...........................13
3.2 Friedman 在判別分析上的正則化方法......................15
3.3 Warton and Friedman 正則化方法的比較..................17
3.3.1 以 Warton 的正則化方法處理 Friedman 的分類問題...17
3.3.2 以 Friedman 的正則化方法處理Warton 的檢定問題....18
4 分析結果與討論...........................................20
4.1 Warton 正則化的參數估計...............................20
4.2 Warton 正則化在檢定上的表現...........................21
4.3 Friedman 正則化的參數估計.............................26
4.4 Friedman 正則化在分類上的表現.........................29
4.5 Warton and Friedman 正則化方法的互換..................31
4.5.1 Warton 的正則化方法用在分類上的模擬結果..........31
4.5.2 Friedman 的正則化方法用在檢定上的模擬結果.........32
4.6 Warton and Friedman 正則化方法的比較..................35
5 結論與建議...............................................39
5.1 結論................................................39
5.2 建議................................................39
zh_TW
dc.format.extent 170844 bytes-
dc.format.extent 531827 bytes-
dc.format.extent 521216 bytes-
dc.format.extent 441986 bytes-
dc.format.extent 609943 bytes-
dc.format.extent 685954 bytes-
dc.format.extent 711067 bytes-
dc.format.extent 1183162 bytes-
dc.format.extent 566313 bytes-
dc.format.extent 128176 bytes-
dc.format.extent 523973 bytes-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0096354019en_US
dc.subject (關鍵詞) 脊迴歸zh_TW
dc.subject (關鍵詞) 正則化zh_TW
dc.subject (關鍵詞) 交叉驗證zh_TW
dc.subject (關鍵詞) 排列檢定zh_TW
dc.subject (關鍵詞) 概似比檢定zh_TW
dc.subject (關鍵詞) 判別分析zh_TW
dc.subject (關鍵詞) Ridge regressionen_US
dc.subject (關鍵詞) Regularizationen_US
dc.subject (關鍵詞) Cross-validationen_US
dc.subject (關鍵詞) Permutation testen_US
dc.subject (關鍵詞) Likelihood ration testen_US
dc.subject (關鍵詞) Discriminant analysisen_US
dc.title (題名) 兩種正則化方法用於假設檢定與判別分析時之比較zh_TW
dc.title (題名) A comparison between two regularization methods for discriminant analysis and hypothesis testingen_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) [1] M.J. Daniels and R.E. Kass. Shrinkage estimators for covariance matrices. Biometrics, 57(4):1173-1184,2001.zh_TW
dc.relation.reference (參考文獻) [2] J.H. Friedman. Regularized discriminant analysis. Journal of the American Statistical Association, 84(405):165-175,1989.zh_TW
dc.relation.reference (參考文獻) [3] J.P. Hoffbeck and D.A, Landgrebe. Covariance matrix estimator and classification with limited training data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(7):763-767, 1996.zh_TW
dc.relation.reference (參考文獻) [4] W.J. Krzanowski, P. Jonathan, W.V. McCarthy, and M.R. Thomas. Discriminant analysis with singular matrices:method and applications to spectroscopic data. Applied Statistics, 44(1):101-115, 1995.zh_TW
dc.relation.reference (參考文獻) [5] D.M. Titterington. Common structure of smoothing techniques in statistics. International Statistical Review, 53(2):141-170, 1985.zh_TW
dc.relation.reference (參考文獻) [6] D.I. Warton. Penalized normal likelihood and ridge regularization of correlation and covariance matrices. Journal of the American Statistical Association, 103(481):340-349, 2008.zh_TW