學術產出-學位論文

題名 區間型模糊數的迴歸分析與應用
Fuzzy Regression Analysis and Application of Interval Fuzzy Random Variables
作者 陳建宏
Chen, Chien Hung
貢獻者 吳柏林
陳建宏
Chen, Chien Hung
關鍵詞 區間型模糊數
模糊線性迴歸分析
模糊覆蓋率
日期 2008
上傳時間 19-九月-2009 12:08:18 (UTC+8)
摘要 本研究主要是探討兩個區間型模糊數之間的直線對應關係。主要的方式是以最小平方估計法(least squares estimation)分別求出區間型模糊數上、下界所對應的迴歸方程式,以該迴歸方程式所求得的上、下界,做為所估計區間型模糊數的上、下界。
單就所蒐集到的上界或下界資料而言,它們是一組明確的資料,並不模糊。研究中所探討的區間型模糊數是由一組明確的上、下界值所構成的。考慮所估計的上、下界值需具有較小的誤差才能增加所構成區間型模糊數的代表性,使用最小平方估計法並以傳統的迴歸方式來求得上、下界迴歸直線,應該是減少估計的上、下界值誤差較佳的方式。
然而以最小平方估計法所估計的上、下界值是相對於資料算術平均數誤差最小。如果所蒐集到的數據愈分散,則算術平均數的代表性將愈低,連帶影響所估計區間型模糊數的準確性。這是使用最小平方估計法做為研究工具的隱憂。
解釋係數是最常被用來判別迴歸模型優劣的參考數值。有鑑於區間型模糊數的模糊特性,傳統迴歸分析的解釋係數並不適用於模糊線性迴歸關係。本研究提出模糊覆蓋率的概念,來判別兩個區間型模糊數之間線型迴歸關係的優劣。最後以中華民國80年到96年間製造業平均月工時對應平均月薪資為例,說明模糊覆蓋率在實務上的應用。
The aim of this paper is to discuss the linear correspondance between two interval fuzzy random variables. We construct the regression equations of the upper and lower bounds of some interval fuzzy random variables, respectively, by the least squares. The upper and lower bounds of the estimated interval fuzzy random variables are derived by the regression equations of upper and lower bounds, respectively.
The collected upper and lower bounds are all crisp data, not fuzzy ones. In this paper, the interval fuzzy random variables discussed are constructed by crisp upper and lower bounds. In order to increase the reprsentative of the interval fuzzy random variables, we need to minimize the errors of the estimated upper and lower bounds. Applying the least squares along with the conventional regression analysis to construct regression lines of upper and lower bounds, respectively, should be the better way to minimize the errors of the estimated upper and lower bounds.
However, the errors of the upper and lower bounds estimated by the least squares are the least according to the arithmetic mean value. The more discrete the data we collected , the less representative of the arithmetic mean value is. That will also affect the accuracy of the estimated interval fuzzy random variables. This is what we are worried while we take the least squares as an tool to analyse the interval fuzzy random variables.
The coefficient of determination is a reference value which is mostly often used to distinguish the accuracy of the conventional regression model. In the view of the characteristics of fuzzy regression model, the conventional coefficient of determination cannot properly explain the fuzzy linear regression model. In this paper, we propose the fuzzy coverage rate to distinguish the accuracy of the fuzzy linear regression model between two interval fuzzy random variables. Finally, we give an example about the mean monthly working-hour and the mean monthly salary of the manufacturing industry in Taiwan from 1991 to 2007, demonstrating the application of the fuzzy coverage rate in reality.
參考文獻 [1] 吳柏林(2005),模糊統計導論方法與應用,五南書局,台北。
[2] 阮亨中、吳柏林(2000),模糊數學與統計應用,俊傑書局,台北。
[3] 吳柏林(1999),現代統計學,五南書局,台北。
[4] 陳孝煒、吳柏林(2007.06),區間回歸與模糊樣本分析,管理科學與統計決策, 4(1),54-65。
[5] 陳國任、林雅惠、吳柏林、謝邦昌 (1998),模糊統計分析及在茶葉品質評定的應用, 台灣茶葉研究彙報, 17, 19-37。
[6] 吳達,吳柏林(2001),模糊回歸參數估計方法與應用,系統工程理論實踐, 11,61-67。
[7]中華民國統計資訊網-主計處統計專區-薪資及生產力統計-統計表(2008) http://win.dgbas.gov.tw/dgbas04/bc5/earning/ht456.asp
[8] Hung T. Ngyyen and Wu, B. (2006.04), Fundamentals of Statistics with Fuzzy Data, Springer-Verlag.
[9] Tanaka, H., Uejima, S. and Asai, K. (1980), Fuzzy Linear Regression Model, International Congress on Applied Systems Research and Cybernetics, Aculpoco, Mexico.
[10] Tanaka, H., Uejima, S. and Asai, K. (1982), Fuzzy Linear Regression Analysis with Fuzzy Model, IEEE Trans. System Man Cybernet, vol SMC 12, 903-907.
[11] Wu, B. and Tseng, N. ( 2002), A New Approach to Fuzzy Regression Models with Application to Business Cycle Analysis, Fuzzy Sets and System, 1(130), 33-42.
[12] Wu, B. and Sun, C.-M. (2001), Interval-Valued Statistics, Fuzzy Logic, and their Use in Computational Semantics, Journal of Intelligent and Fuzzy Systems, 11, 1-7.
[13] Zeng, W., Shi, Y. and Li, H. (2006), Fuzzy Linear Regression Model, School of Maththematical Sciences, Beijing Normal University, Beijing,China
描述 碩士
國立政治大學
應用數學研究所
95972001
97
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0095972001
資料類型 thesis
dc.contributor.advisor 吳柏林zh_TW
dc.contributor.author (作者) 陳建宏zh_TW
dc.contributor.author (作者) Chen, Chien Hungen_US
dc.creator (作者) 陳建宏zh_TW
dc.creator (作者) Chen, Chien Hungen_US
dc.date (日期) 2008en_US
dc.date.accessioned 19-九月-2009 12:08:18 (UTC+8)-
dc.date.available 19-九月-2009 12:08:18 (UTC+8)-
dc.date.issued (上傳時間) 19-九月-2009 12:08:18 (UTC+8)-
dc.identifier (其他 識別碼) G0095972001en_US
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/37095-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 應用數學研究所zh_TW
dc.description (描述) 95972001zh_TW
dc.description (描述) 97zh_TW
dc.description.abstract (摘要) 本研究主要是探討兩個區間型模糊數之間的直線對應關係。主要的方式是以最小平方估計法(least squares estimation)分別求出區間型模糊數上、下界所對應的迴歸方程式,以該迴歸方程式所求得的上、下界,做為所估計區間型模糊數的上、下界。
單就所蒐集到的上界或下界資料而言,它們是一組明確的資料,並不模糊。研究中所探討的區間型模糊數是由一組明確的上、下界值所構成的。考慮所估計的上、下界值需具有較小的誤差才能增加所構成區間型模糊數的代表性,使用最小平方估計法並以傳統的迴歸方式來求得上、下界迴歸直線,應該是減少估計的上、下界值誤差較佳的方式。
然而以最小平方估計法所估計的上、下界值是相對於資料算術平均數誤差最小。如果所蒐集到的數據愈分散,則算術平均數的代表性將愈低,連帶影響所估計區間型模糊數的準確性。這是使用最小平方估計法做為研究工具的隱憂。
解釋係數是最常被用來判別迴歸模型優劣的參考數值。有鑑於區間型模糊數的模糊特性,傳統迴歸分析的解釋係數並不適用於模糊線性迴歸關係。本研究提出模糊覆蓋率的概念,來判別兩個區間型模糊數之間線型迴歸關係的優劣。最後以中華民國80年到96年間製造業平均月工時對應平均月薪資為例,說明模糊覆蓋率在實務上的應用。
zh_TW
dc.description.abstract (摘要) The aim of this paper is to discuss the linear correspondance between two interval fuzzy random variables. We construct the regression equations of the upper and lower bounds of some interval fuzzy random variables, respectively, by the least squares. The upper and lower bounds of the estimated interval fuzzy random variables are derived by the regression equations of upper and lower bounds, respectively.
The collected upper and lower bounds are all crisp data, not fuzzy ones. In this paper, the interval fuzzy random variables discussed are constructed by crisp upper and lower bounds. In order to increase the reprsentative of the interval fuzzy random variables, we need to minimize the errors of the estimated upper and lower bounds. Applying the least squares along with the conventional regression analysis to construct regression lines of upper and lower bounds, respectively, should be the better way to minimize the errors of the estimated upper and lower bounds.
However, the errors of the upper and lower bounds estimated by the least squares are the least according to the arithmetic mean value. The more discrete the data we collected , the less representative of the arithmetic mean value is. That will also affect the accuracy of the estimated interval fuzzy random variables. This is what we are worried while we take the least squares as an tool to analyse the interval fuzzy random variables.
The coefficient of determination is a reference value which is mostly often used to distinguish the accuracy of the conventional regression model. In the view of the characteristics of fuzzy regression model, the conventional coefficient of determination cannot properly explain the fuzzy linear regression model. In this paper, we propose the fuzzy coverage rate to distinguish the accuracy of the fuzzy linear regression model between two interval fuzzy random variables. Finally, we give an example about the mean monthly working-hour and the mean monthly salary of the manufacturing industry in Taiwan from 1991 to 2007, demonstrating the application of the fuzzy coverage rate in reality.
en_US
dc.description.tableofcontents 摘要 ……………………………………………………………i
1、前言…………………………………………………………1
2、研究方法
2.1 模糊數與隸屬度函數…………………………………3
2.2 一般傳統上的迴歸分析及模糊迴歸分析…………5
2.3 區間迴歸的一些性質…………………………………11
2.4 區間模糊迴歸的解釋能力……………………………14
3、實例…………………………………………………………16
4、結論…………………………………………………………21
參考文獻…………………………………………………………22
zh_TW
dc.format.extent 110839 bytes-
dc.format.extent 135803 bytes-
dc.format.extent 109759 bytes-
dc.format.extent 167012 bytes-
dc.format.extent 299084 bytes-
dc.format.extent 206486 bytes-
dc.format.extent 134207 bytes-
dc.format.extent 119683 bytes-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0095972001en_US
dc.subject (關鍵詞) 區間型模糊數zh_TW
dc.subject (關鍵詞) 模糊線性迴歸分析zh_TW
dc.subject (關鍵詞) 模糊覆蓋率zh_TW
dc.title (題名) 區間型模糊數的迴歸分析與應用zh_TW
dc.title (題名) Fuzzy Regression Analysis and Application of Interval Fuzzy Random Variablesen_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) [1] 吳柏林(2005),模糊統計導論方法與應用,五南書局,台北。zh_TW
dc.relation.reference (參考文獻) [2] 阮亨中、吳柏林(2000),模糊數學與統計應用,俊傑書局,台北。zh_TW
dc.relation.reference (參考文獻) [3] 吳柏林(1999),現代統計學,五南書局,台北。zh_TW
dc.relation.reference (參考文獻) [4] 陳孝煒、吳柏林(2007.06),區間回歸與模糊樣本分析,管理科學與統計決策, 4(1),54-65。zh_TW
dc.relation.reference (參考文獻) [5] 陳國任、林雅惠、吳柏林、謝邦昌 (1998),模糊統計分析及在茶葉品質評定的應用, 台灣茶葉研究彙報, 17, 19-37。zh_TW
dc.relation.reference (參考文獻) [6] 吳達,吳柏林(2001),模糊回歸參數估計方法與應用,系統工程理論實踐, 11,61-67。zh_TW
dc.relation.reference (參考文獻) [7]中華民國統計資訊網-主計處統計專區-薪資及生產力統計-統計表(2008) http://win.dgbas.gov.tw/dgbas04/bc5/earning/ht456.aspzh_TW
dc.relation.reference (參考文獻) [8] Hung T. Ngyyen and Wu, B. (2006.04), Fundamentals of Statistics with Fuzzy Data, Springer-Verlag.zh_TW
dc.relation.reference (參考文獻) [9] Tanaka, H., Uejima, S. and Asai, K. (1980), Fuzzy Linear Regression Model, International Congress on Applied Systems Research and Cybernetics, Aculpoco, Mexico.zh_TW
dc.relation.reference (參考文獻) [10] Tanaka, H., Uejima, S. and Asai, K. (1982), Fuzzy Linear Regression Analysis with Fuzzy Model, IEEE Trans. System Man Cybernet, vol SMC 12, 903-907.zh_TW
dc.relation.reference (參考文獻) [11] Wu, B. and Tseng, N. ( 2002), A New Approach to Fuzzy Regression Models with Application to Business Cycle Analysis, Fuzzy Sets and System, 1(130), 33-42.zh_TW
dc.relation.reference (參考文獻) [12] Wu, B. and Sun, C.-M. (2001), Interval-Valued Statistics, Fuzzy Logic, and their Use in Computational Semantics, Journal of Intelligent and Fuzzy Systems, 11, 1-7.zh_TW
dc.relation.reference (參考文獻) [13] Zeng, W., Shi, Y. and Li, H. (2006), Fuzzy Linear Regression Model, School of Maththematical Sciences, Beijing Normal University, Beijing,Chinazh_TW
dc.relation.reference (參考文獻) zh_TW