學術產出-學位論文

題名 最大係數熱帶多項式及其應用
Largest-coefficient Tropical Polynomials and Their Applications
作者 林如苹
貢獻者 蔡炎龍
林如苹
關鍵詞 熱帶幾何
熱帶多項式
最大係數熱帶多項式
熱帶代數基本定理
日期 2008
上傳時間 19-九月-2009 12:08:25 (UTC+8)
摘要 熱帶幾何(tropical geometry)在近年來引起數學家的注意,因為它可以簡化許多數學難題。本篇論文主要在探討單變數熱帶多項式(single variable tropical polynomial)的因式分解。對於每個熱帶多項式,我們都可以定義其對應的最大係數熱帶多項式(largest-coefficient tropical polynomial ),而且此最大係數熱帶多項式可以因式分解為線性乘積。根據此結果,熱帶代數基本定理(Fundamental Theorem of Tropical Algebra)即成立。此外,可將單變數熱帶多項式因式分解的許多概念延伸至多變數的情形。
Tropical geometry draw much attention recent years for it simplifies many difficult classical mathematics problems. The thesis mainly discuss factorization of single variable tropical polynomials. For every tropical polynomial, we define the corresponding largest-coefficient tropical polynomial. We show that each largest-coefficient tropical polynomial can be factorized into a product of linear terms. As a result, the Fundamental Theorem of Tropical Algebra holds. Furthermore, we observe that many notions of factorization of single variable tropical polynomial can be extended to multivariate cases.
參考文獻 [1] Lucia Caporaso and Joe Harris. Counting plane curves of any genus. Inventiones Mathematicae, 131(2):345{392, 2 1998.
[2] Andreas Gathmann. Tropical algebraic geometry. Jahresber. Deutsch. Math.-Verein., 108(1):3{32, 2006.
[3] Nathan Grigg and Nathan Manwaring. An elementary proof
of the fundamental theorem of tropical algebra. Preprint at
arXiv:math.CO/0701.2591, February 2008.
[4] Nathan B. Grigg. Factorization of Tropical Polynomials in One and Several Variables. Honor`s thesis, Brigham Young University, June 2007.
[5] Grigory Mikhalkin. Counting curves via lattice paths in polygons. C.R. Math. Acad. Sci. Paris, 336(8):629{634, 2003.
[6] Grigory Mikhalkin. Enumerative tropical algebraic geometry in R2. J.Amer. Math. Soc., 18(2):313{377 (electronic), 2005.
[7] Grigory Mikhalkin. Tropical geometry and its applications. In Interna-tional Congress of Mathematicians. Vol. II, pages 827{852. Eur. Math.
Soc., Zurich, 2006.
[8] Jurgen Richter-Gebert, Bernd Sturmfels, and Thorsten Theobald. First steps in tropical geometry. Contemporary Mathematics, 377:289{317,2005.
[9] David Speyer and Bernd Sturmfels. The tropical grassmannian. Ad-vances in Geometry, 4:389{411, 2004.
[10] David Speyer and Bernd Sturmfels. Tropical mathematics. Preprint at arXiv:math.CO/0408099, 2004.
描述 碩士
國立政治大學
應用數學研究所
95972002
97
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0095972002
資料類型 thesis
dc.contributor.advisor 蔡炎龍zh_TW
dc.contributor.author (作者) 林如苹zh_TW
dc.creator (作者) 林如苹zh_TW
dc.date (日期) 2008en_US
dc.date.accessioned 19-九月-2009 12:08:25 (UTC+8)-
dc.date.available 19-九月-2009 12:08:25 (UTC+8)-
dc.date.issued (上傳時間) 19-九月-2009 12:08:25 (UTC+8)-
dc.identifier (其他 識別碼) G0095972002en_US
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/37096-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 應用數學研究所zh_TW
dc.description (描述) 95972002zh_TW
dc.description (描述) 97zh_TW
dc.description.abstract (摘要) 熱帶幾何(tropical geometry)在近年來引起數學家的注意,因為它可以簡化許多數學難題。本篇論文主要在探討單變數熱帶多項式(single variable tropical polynomial)的因式分解。對於每個熱帶多項式,我們都可以定義其對應的最大係數熱帶多項式(largest-coefficient tropical polynomial ),而且此最大係數熱帶多項式可以因式分解為線性乘積。根據此結果,熱帶代數基本定理(Fundamental Theorem of Tropical Algebra)即成立。此外,可將單變數熱帶多項式因式分解的許多概念延伸至多變數的情形。zh_TW
dc.description.abstract (摘要) Tropical geometry draw much attention recent years for it simplifies many difficult classical mathematics problems. The thesis mainly discuss factorization of single variable tropical polynomials. For every tropical polynomial, we define the corresponding largest-coefficient tropical polynomial. We show that each largest-coefficient tropical polynomial can be factorized into a product of linear terms. As a result, the Fundamental Theorem of Tropical Algebra holds. Furthermore, we observe that many notions of factorization of single variable tropical polynomial can be extended to multivariate cases.en_US
dc.description.tableofcontents 1 Introduction .....................................2
2 Background .....................................5
2.1 Arithmetic .....................................5
2.2 Tropical Polynomial in one variable ............6
3 Fundamental Theorem of Tropical Algebra ..........9
3.1 Tropical Polynomials and Tropical Functions ...10
3.2 The Fundamental Theorem of Tropical Algebra ...21
3.3 The Corner Locus of a Polynomial ..............23
4 Conclusion ......................................26
zh_TW
dc.format.extent 114106 bytes-
dc.format.extent 120382 bytes-
dc.format.extent 69423 bytes-
dc.format.extent 71792 bytes-
dc.format.extent 87666 bytes-
dc.format.extent 96203 bytes-
dc.format.extent 272533 bytes-
dc.format.extent 71312 bytes-
dc.format.extent 82573 bytes-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0095972002en_US
dc.subject (關鍵詞) 熱帶幾何zh_TW
dc.subject (關鍵詞) 熱帶多項式zh_TW
dc.subject (關鍵詞) 最大係數熱帶多項式zh_TW
dc.subject (關鍵詞) 熱帶代數基本定理zh_TW
dc.title (題名) 最大係數熱帶多項式及其應用zh_TW
dc.title (題名) Largest-coefficient Tropical Polynomials and Their Applicationsen_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) [1] Lucia Caporaso and Joe Harris. Counting plane curves of any genus. Inventiones Mathematicae, 131(2):345{392, 2 1998.zh_TW
dc.relation.reference (參考文獻) [2] Andreas Gathmann. Tropical algebraic geometry. Jahresber. Deutsch. Math.-Verein., 108(1):3{32, 2006.zh_TW
dc.relation.reference (參考文獻) [3] Nathan Grigg and Nathan Manwaring. An elementary proofzh_TW
dc.relation.reference (參考文獻) of the fundamental theorem of tropical algebra. Preprint atzh_TW
dc.relation.reference (參考文獻) arXiv:math.CO/0701.2591, February 2008.zh_TW
dc.relation.reference (參考文獻) [4] Nathan B. Grigg. Factorization of Tropical Polynomials in One and Several Variables. Honor`s thesis, Brigham Young University, June 2007.zh_TW
dc.relation.reference (參考文獻) [5] Grigory Mikhalkin. Counting curves via lattice paths in polygons. C.R. Math. Acad. Sci. Paris, 336(8):629{634, 2003.zh_TW
dc.relation.reference (參考文獻) [6] Grigory Mikhalkin. Enumerative tropical algebraic geometry in R2. J.Amer. Math. Soc., 18(2):313{377 (electronic), 2005.zh_TW
dc.relation.reference (參考文獻) [7] Grigory Mikhalkin. Tropical geometry and its applications. In Interna-tional Congress of Mathematicians. Vol. II, pages 827{852. Eur. Math.zh_TW
dc.relation.reference (參考文獻) Soc., Zurich, 2006.zh_TW
dc.relation.reference (參考文獻) [8] Jurgen Richter-Gebert, Bernd Sturmfels, and Thorsten Theobald. First steps in tropical geometry. Contemporary Mathematics, 377:289{317,2005.zh_TW
dc.relation.reference (參考文獻) [9] David Speyer and Bernd Sturmfels. The tropical grassmannian. Ad-vances in Geometry, 4:389{411, 2004.zh_TW
dc.relation.reference (參考文獻) [10] David Speyer and Bernd Sturmfels. Tropical mathematics. Preprint at arXiv:math.CO/0408099, 2004.zh_TW