學術產出-學位論文

題名 一個有關開票的問題
About A Ballot Problem
作者 楊蘭芬
貢獻者 李陽明
楊蘭芬
關鍵詞 好路徑
一路領先
a good path
leading all the way
日期 2008
上傳時間 19-九月-2009 12:08:46 (UTC+8)
摘要 本篇論文主要在討論兩個人參選時的開票情況,研究「n+m人投票且無人投廢票的情況下,其中一人至少得n票且一路領先的開票方法數等於此人得n票的所有開票方法數」 ,第一章介紹研究動機及他人所使用的方式,使用路徑的方法證明一人得n票,另一人得m票,n≥m,得n票的人一路領先且勝出的方法數等於 C_n^(m+n)-C_(n+1)^(m+n)=C_m^(m+n)-C_(m-1)^(m+n),再用計算相消的方式算出,此人至少得n票且一路領先的開票方法數等於此人得n票的所有開票方法數。
第二章介紹用一個折路徑的方法,將所有「一人得n票開票方法數」中非一路領先的路徑圖,經由一個壓扁、翻轉的摺紙方式,對應到「此人至少得n票且一路領先」的開票情況路徑圖,經由數學論證,這樣的路徑,是一對一且映成,並舉出兩個例子驗證其結果。
論文最後,提出一個猜想:若參選人數為三人時,其中一位參選人一路領先且勝出的開票方法數,應該可以用立體空間的方塊圖之路徑來證明。本篇論文,雖然沒有繼續討論這個有趣的問題,但也留下一個新的研究方向。
The theme of this thesis is mainly to discuss of situation of counting and announcing the ballots in an election with two candidates. In explaining the contents of the "Total n+m votes, there’s no invalid vote. One candidate wins at least n votes and lead all the way. Under this circumstance this number of the way will be equal to all numbers of the way for these n votes of this candidate.” At first, we will introduce the methodology of the other adopt, the methodology of previous path of way proves one candidate known to have n votes, another candidate has m votes, the method of candidate with n votes who leads all the way and won will be equal to C_n^(m+n)-C_(n+1)^(m+n)=C_m^(m+n)-C_(m-1)^(m+n), and then result of calculating cancellation will prove this candidate will have at last n votes and leads the way to victory will be equal to all the methodologies of counting and announcing the ballots in this election.
A method of flip the path will be introduced in the second chapter.
Corresponding to the road map of ballot counting for the candidate who has n votes and lead the way to victory, the road map of same one with n votes without leading the way through a step-ping, flip the way of origami will be mathematically proves such reflect of the way will be reflect one to one and onto. By means of the discrete method is able to prove this result and the method to verify availability
Finally, I would like to propose a surmise: If the number of candidates increased to 3, the methodology of the one who leads all the way should be able to use three-dimensional space of a block diagram of the path to prove. Although this thesis does not to continue pondering the interesting question, but also left a new research direction.
參考文獻 [1] John H. Conway and Richard Guy, The Book of Numbers. New York: Copernicus, 1996.
[2] Tom Davis. Catalan Numbers.http://www.geometer.org/mathcircles .November 26, 2006.
[3] Catalan Eugene. (1844): Note extraite d’une lettre adress´ee,J. Reine Angew. Math., 27 :192.
[4] Martin Gardner (1988), Time Travel and Other Mathematical Bewilderments, New York: W.H. Freeman and Company.
[5] Richard P. Stanley (1999), Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, 62, Cambridge University Press, http://www-math.mit.edu/~rstan/ec/ .
[6] Alan Tucker. Applied Combinatorics. New York: John Wiley & Sons,Inc,1995.
[7] http://cplee8tcfsh.blogspot.com/2007/02/blog-post_8619.html
描述 碩士
國立政治大學
應用數學研究所
95972012
97
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0095972012
資料類型 thesis
dc.contributor.advisor 李陽明zh_TW
dc.contributor.author (作者) 楊蘭芬zh_TW
dc.creator (作者) 楊蘭芬zh_TW
dc.date (日期) 2008en_US
dc.date.accessioned 19-九月-2009 12:08:46 (UTC+8)-
dc.date.available 19-九月-2009 12:08:46 (UTC+8)-
dc.date.issued (上傳時間) 19-九月-2009 12:08:46 (UTC+8)-
dc.identifier (其他 識別碼) G0095972012en_US
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/37099-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 應用數學研究所zh_TW
dc.description (描述) 95972012zh_TW
dc.description (描述) 97zh_TW
dc.description.abstract (摘要) 本篇論文主要在討論兩個人參選時的開票情況,研究「n+m人投票且無人投廢票的情況下,其中一人至少得n票且一路領先的開票方法數等於此人得n票的所有開票方法數」 ,第一章介紹研究動機及他人所使用的方式,使用路徑的方法證明一人得n票,另一人得m票,n≥m,得n票的人一路領先且勝出的方法數等於 C_n^(m+n)-C_(n+1)^(m+n)=C_m^(m+n)-C_(m-1)^(m+n),再用計算相消的方式算出,此人至少得n票且一路領先的開票方法數等於此人得n票的所有開票方法數。
第二章介紹用一個折路徑的方法,將所有「一人得n票開票方法數」中非一路領先的路徑圖,經由一個壓扁、翻轉的摺紙方式,對應到「此人至少得n票且一路領先」的開票情況路徑圖,經由數學論證,這樣的路徑,是一對一且映成,並舉出兩個例子驗證其結果。
論文最後,提出一個猜想:若參選人數為三人時,其中一位參選人一路領先且勝出的開票方法數,應該可以用立體空間的方塊圖之路徑來證明。本篇論文,雖然沒有繼續討論這個有趣的問題,但也留下一個新的研究方向。
zh_TW
dc.description.abstract (摘要) The theme of this thesis is mainly to discuss of situation of counting and announcing the ballots in an election with two candidates. In explaining the contents of the "Total n+m votes, there’s no invalid vote. One candidate wins at least n votes and lead all the way. Under this circumstance this number of the way will be equal to all numbers of the way for these n votes of this candidate.” At first, we will introduce the methodology of the other adopt, the methodology of previous path of way proves one candidate known to have n votes, another candidate has m votes, the method of candidate with n votes who leads all the way and won will be equal to C_n^(m+n)-C_(n+1)^(m+n)=C_m^(m+n)-C_(m-1)^(m+n), and then result of calculating cancellation will prove this candidate will have at last n votes and leads the way to victory will be equal to all the methodologies of counting and announcing the ballots in this election.
A method of flip the path will be introduced in the second chapter.
Corresponding to the road map of ballot counting for the candidate who has n votes and lead the way to victory, the road map of same one with n votes without leading the way through a step-ping, flip the way of origami will be mathematically proves such reflect of the way will be reflect one to one and onto. By means of the discrete method is able to prove this result and the method to verify availability
Finally, I would like to propose a surmise: If the number of candidates increased to 3, the methodology of the one who leads all the way should be able to use three-dimensional space of a block diagram of the path to prove. Although this thesis does not to continue pondering the interesting question, but also left a new research direction.
en_US
dc.description.tableofcontents 第一章 前言 …………………………………………………………1
1.1 研究動機與目的………………………………………………1
1.2 研究主題………………………………………………………2
第二章 路徑證明法 ………………………………………………...4
第三章 結論與推論……………………………………………………23
參考書目……………………………………………………………… 24
zh_TW
dc.format.extent 94616 bytes-
dc.format.extent 166778 bytes-
dc.format.extent 241959 bytes-
dc.format.extent 331743 bytes-
dc.format.extent 833509 bytes-
dc.format.extent 130973 bytes-
dc.format.extent 124581 bytes-
dc.format.extent 283688 bytes-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0095972012en_US
dc.subject (關鍵詞) 好路徑zh_TW
dc.subject (關鍵詞) 一路領先zh_TW
dc.subject (關鍵詞) a good pathen_US
dc.subject (關鍵詞) leading all the wayen_US
dc.title (題名) 一個有關開票的問題zh_TW
dc.title (題名) About A Ballot Problemen_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) [1] John H. Conway and Richard Guy, The Book of Numbers. New York: Copernicus, 1996.zh_TW
dc.relation.reference (參考文獻) [2] Tom Davis. Catalan Numbers.http://www.geometer.org/mathcircles .November 26, 2006.zh_TW
dc.relation.reference (參考文獻) [3] Catalan Eugene. (1844): Note extraite d’une lettre adress´ee,J. Reine Angew. Math., 27 :192.zh_TW
dc.relation.reference (參考文獻) [4] Martin Gardner (1988), Time Travel and Other Mathematical Bewilderments, New York: W.H. Freeman and Company.zh_TW
dc.relation.reference (參考文獻) [5] Richard P. Stanley (1999), Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, 62, Cambridge University Press, http://www-math.mit.edu/~rstan/ec/ .zh_TW
dc.relation.reference (參考文獻) [6] Alan Tucker. Applied Combinatorics. New York: John Wiley & Sons,Inc,1995.zh_TW
dc.relation.reference (參考文獻) [7] http://cplee8tcfsh.blogspot.com/2007/02/blog-post_8619.htmlzh_TW