dc.contributor.advisor | 姜志銘 | zh_TW |
dc.contributor.author (作者) | 林其緯 | zh_TW |
dc.contributor.author (作者) | Lin,Chi Wei | en_US |
dc.creator (作者) | 林其緯 | zh_TW |
dc.creator (作者) | Lin,Chi Wei | en_US |
dc.date (日期) | 2009 | en_US |
dc.date.accessioned | 8-十二月-2010 11:54:34 (UTC+8) | - |
dc.date.available | 8-十二月-2010 11:54:34 (UTC+8) | - |
dc.date.issued (上傳時間) | 8-十二月-2010 11:54:34 (UTC+8) | - |
dc.identifier (其他 識別碼) | G0927510071 | en_US |
dc.identifier.uri (URI) | http://nccur.lib.nccu.edu.tw/handle/140.119/49462 | - |
dc.description (描述) | 碩士 | zh_TW |
dc.description (描述) | 國立政治大學 | zh_TW |
dc.description (描述) | 應用數學研究所 | zh_TW |
dc.description (描述) | 92751007 | zh_TW |
dc.description (描述) | 98 | zh_TW |
dc.description.abstract (摘要) | 在許多科學領域裡所蒐集到的資料是具有方向性且落在單位球上,而在具有方向性且在單位球上的資料分配中,最重要也是最常使用的分配是3維的von Mises-Fisher分配。在過去有許多學者專家曾分析過具有3維von Mises-Fisher分配的資料,其中Nunez-Antonio和Gutierrez-Pena (2005)也曾利用全貝氏法來分析此種資料。本文首次嘗試利用半母數貝氏法來分析具有3維von Mises-Fisher分配的資料。除了介紹如何估計參數以及預測未來資料的機率密度函數外,本文也將檢定兩組分別服從不同3維von Mises-Fisher分配的資料其平均方向是否相同,並且提供選取先驗分配與其參數之建議。 | zh_TW |
dc.description.tableofcontents | Abstract 1摘要 21.簡介 32.von Mises-Fisher分配 43.Dirichlet過程 54.vMF3分配使用Dirichlet過程 75.模擬樣本之估計和預測 116.兩組樣本之檢定 147.模擬樣本之檢定 168.結論 18參考書目 20A附錄 22 | zh_TW |
dc.format.extent | 719531 bytes | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | en_US | - |
dc.source.uri (資料來源) | http://thesis.lib.nccu.edu.tw/record/#G0927510071 | en_US |
dc.subject (關鍵詞) | Dirichlet過程 | zh_TW |
dc.subject (關鍵詞) | von Mises-Fisher分配 | zh_TW |
dc.subject (關鍵詞) | 半母數貝氏分析法 | zh_TW |
dc.title (題名) | von Mises-Fisher分配資料的半母數貝氏分析法 | zh_TW |
dc.title (題名) | Semi-parametric Bayesian analysis on von Mises-Fisher distribution data | en_US |
dc.type (資料類型) | thesis | en |
dc.relation.reference (參考文獻) | 1. Antoniak, C. E. (1974). Mixtures of Dirichlet Processes with Applications to Bayesian Nonparametric Problems, | zh_TW |
dc.relation.reference (參考文獻) | The Annals of Statistics, 2, 1152-1174. | zh_TW |
dc.relation.reference (參考文獻) | 2. Blackwell, D., and MacQueen, J.B. (1973). Ferguson Distribution via Polya Urn Schemes, The Annals of Statistics, 1, 353-355. | zh_TW |
dc.relation.reference (參考文獻) | 3. Escobar, M. D. (1994). Estimating Normal Means with a Dirichlet Process Prior, | zh_TW |
dc.relation.reference (參考文獻) | Journal of the American Statistical Association, 89, 268-277. | zh_TW |
dc.relation.reference (參考文獻) | 4. Escobar, M. D. (1995). Nonparametric Bayesian Methods in Hierarchical Models, Journal of Statistical Planning and Inference, 43, 97-106. | zh_TW |
dc.relation.reference (參考文獻) | 5. Ferguson, T. S. (1973). A Bayesian Analysis of Some Nonparametric Problems, The Annals of Statistics, 1, 209-230. | zh_TW |
dc.relation.reference (參考文獻) | 6. Fisher, N.I., Lewis, T., and Embleton, B.J.J. (1987). Statistical Analysis of Spherical Data, Combridge: university Press. | zh_TW |
dc.relation.reference (參考文獻) | 7. Gelfand, A. E., and Smith, A. F. M. (1990). Sampling-Based Approaches to Calculating Marginal Densities, | zh_TW |
dc.relation.reference (參考文獻) | Journal of the American Statistical Association, 85, 398-409. | zh_TW |
dc.relation.reference (參考文獻) | 8. Ghosh, K., Jammalamadaka, S. R., and Tiwari, R. C. (2003). Semiparametric Bayesian Techniques for Problems in Circular Data, Journal of Applied Statistics, 30, 145-161. | zh_TW |
dc.relation.reference (參考文獻) | 9. Jammalamadaka, S. R.,and SenGupta, A. (2001). Topics in Circular Statistics, Singapore: World Scientific. | zh_TW |
dc.relation.reference (參考文獻) | 10. Mardia, K. V. (1972) Statistics od Directional Data, London: Academic Press. | zh_TW |
dc.relation.reference (參考文獻) | 11. Mardia, K. V. and Jupp, P. E. (2000) Directional Statistics, Chichester: John Wiley and Sons, Ltd. | zh_TW |
dc.relation.reference (參考文獻) | 12. Nunez-Antonio, G. and Gutierrez-Pena, E. (2005). A Bayesian Analysis of Directional Data Using the von Mises-Fisher Distribution, Communications in Statistics-Simulation and Computation, 34, 989-999. | zh_TW |
dc.relation.reference (參考文獻) | 13. Press, S. J. (2003) Subjective and Objective Bayesian Statistics: Principles, Models, and Applications, John Wiley and Sons, New Jersey. | zh_TW |