學術產出-學位論文

文章檢視/開啟

書目匯出

Google ScholarTM

政大圖書館

引文資訊

TAIR相關學術產出

題名 探討安非他命引發的制約場地偏好行為的分子機制:以大腦神經滋養因子為例
Investigation of molecular mechanisms on amphetamine induced conditioned place preference: the role of Brain-Derived Neurotrophic Factor (BDNF)
作者 張庭源
貢獻者 廖瑞銘
張庭源
關鍵詞 安非他命
制約場地偏好
再復發行為
行為致敏化
大腦神經滋養因子
大白鼠
amphetamine
conditioned place preference
relapse
behavioral sensitization
BDNF
rat
日期 2010
上傳時間 29-九月-2011 18:26:09 (UTC+8)
摘要 制約場地偏好行為為研究藥物成癮的常用模式之一,對於其行為表現及再復發的神經機制,多巴胺系統佔有舉足輕重的地位。而大腦神經滋養因子(BDNF)與多巴胺系統密切相關,影響其神經元可塑性。故本研究以BDNF來作為目標分子,進行一系列的實驗探討制約場地偏好的神經機制。實驗一A以不同劑量安非他命建立制約場地偏好行為,並分析其BDNF mRNA的表現量。實驗結果顯示1 mg/kg安非他命能夠引發制約場地偏好行為,但是對於內側前額葉、紋狀體、依核、背側海馬迴、杏仁核等五個區塊的BDNF mRNA無顯著的影響效果。實驗一B再次確認實驗一A的結果,顯示俱有安非他命引發制約場地偏好行為的受試,其大腦五個區塊BDNF mRNA沒有顯著的變化。實驗二探測制約場地偏好行為再復發對於相同的五個區塊BDNF mRNA變化。結果發現0.75 mg/kg安非他命能誘發制約場地偏好再復發行為,並且能引發內側前額葉中BDNF mRNA的增加,但對其餘四個區塊則無明顯的影響效果。實驗三以單次注射安非他命探討對於BDNF mRNA是否有立即性的影響,結果顯示五個區塊皆無明顯的變化。實驗四以安非他命引發的行為致敏化反應為行為模式,偵測BDNF mRNA的表現情形。結果發現藥物制約配對組與單次注射安非他命組在活動量上無顯著的差異,顯示出無行為致敏化反應的發生。檢驗五個區塊BDNF mRNA的表現,亦沒有發現明顯的改變。綜合以上的實驗結果,本研究得到安非他命制約場地偏好再復發行為,會伴隨內側前額葉BDNF mRNA的增加。而單獨的安非他命引發制約場地偏好行為,並不會改變BDNF mRNA。這些結果顯示BDNF參與在較複雜的制約學習行為歷程,而不是在單獨的藥物注射或與環境配對的制約過程。
Conditioned place preference (CPP) is widely used as an experimental behavioral model in the study of drug addiction and reward learning. Brain dopamine systems play an important role to drive the CPP performance and its relapse. Brain-derived neurotrophic factor (BDNF) is closely related to dopamine system that can promote neuron plasticity involved in certain types of behavior. Taking BDNF as the target molecule, this project conducted a series of experiments to delve into the neural mechanism of CPP. Different doses of amphetamine on the CPP behavior were assessed in Experiment 1A, and BDNF mRNA was tested after CPP test. The results show that 1 mg/kg amphetamine significantly induced CPP, but no significant effect on BDNF mRNA in any of five brain areas tested, including medial prefrontal cortex, striatum, nucleus accumbens, dorsal hippocampus and amygdala. The results of Experiment 1A was further confirmed by Experiment 1B, indicating no significant change on BDNF mRNA in five brain areas of rats with significant amphetamine-induced CPP. Experiment 2 examined the effects of CPP relapse and tested BDNF mRNA in the aforementioned five brain areas. The results show that 0.75 mg/kg amphetamine significantly induced CPP relapse and also increased BDNF mRNA level in medial prefrontal cortex. Such an increase of BDNF mRNA was not observed in any other four areas. Single acute injection of amphetamine was administered in Experiment 3 to delve into the possible immediate drug effect on BDNF mRNA. Its results show no significant change on five brain areas following this acute drug treatment. Experiment 4 used amphetamine-induced behavioral sensitization as a behavioral mode to determine the expression of BDNF mRNA. The results show no significant difference both for amphetamine-paired group and acute amphetamine group on locomotion, that indicated no behavioral sensitization formed in this test. There was no significant difference in the expression of BDNF mRNA in five brain areas. These results indicate that amphetamine-induced CPP relapse, but not CPP performance itself, is accompanied by the increase of BDNF mRNA level in medial prefrontal cortex. These findings indicate that BDNF is involved in place conditioning formed by psychostimulant drug when it is reinstated after extinction, rather than by a solitary drug injection or a relatively simple conditioning process by pairing drug with the environmental context.
參考文獻 Alonso M, Vianna MR, Depino, AM, Mello e Souza T, Pereira P, Szapiro G, Viola H, Pitossi F, Izquierdo I, Medina JH (2002) BDNF-triggered events in the rat hippocampus are required for both short- and long-term memory formation. Hippocampus 12: 551-560.
Aguilar-Valles A, Sánchez E, de Gortari P, Balderas I, Ramírez-Amaya V, Bermúdez-Rattoni F, Joseph-Bravo P (2005) Analysis of the stress response in rats trained in the water-maze: differential expression of corticotropin-releasing hormone, CRH-R1, glucocorticoid receptors and brain-derived neurotrophic factor in limbic regions. Neuroendocrinology 82: 306-319.
Bahi A, Boyer F, Chandrasekar V, Dreyer JL (2008) Role of accumbens BDNF and TrkB in cocaine-induced psychomotor sensitization, conditioned-place preference, and reinstatement in rats. Psychopharmacology (Berl) 199: 169-182.
Banerjee PS, Aston J, Khundakar AA, Zetterström TS (2009) Differential regulation of psychostimulant-induced gene expression of brain derived neurotrophic factor and the immediate-early gene Arc in the juvenile and adult brain. Eur J Neurosci 29: 465-476.
Barde YA, Edgar D, Thoenen H (1982) Purification of a new neurotrophic factor from mammalian brain. EMBO J 1: 549-553.
Bardo MT, Bevins RA (2000) Conditioned place preference: what does it add to our preclinical understanding of drug reward? Psychopharmacology (Berl) 153: 31-43.
Berglind WJ, See RE, Fuchs, RA, Ghee SM, Whitfield TW Jr, Miller SW, McGinty JF (2007) A BDNF infusion into the medial prefrontal cortex suppresses cocaine seeking in rats. Eur J Neurosci 26: 757-766.
Berglind WJ, Whitfield TW Jr, LaLumiere RT, Kalivas PW, McGinty JF (2009) A single intra-PFC infusion of BDNF prevents cocaine-induced alterations in extracellular glutamate within the nucleus accumbens. J Neurosci 29: 3715-3719.
Botreau F, Paolone G, Stewart J (2006) D-Cycloserine facilitates extinction of a cocaine-induced conditioned place preference. Behav Brain Res 172: 173-178.
Boutrel B, Koob GF (2004) What keeps us awake: the neuropharmacology of stimulants and wakefulness-promoting medications. Sleep 27: 1181-1194.
Brown RM, Short JL, Lawrence AJ (2010) Identification of brain nuclei implicated in cocaine-primed reinstatement of conditioned place preference: a behaviour dissociable from sensitization. PLoS One 5: 1-13.
Carlezon WA Jr, Duman RS, Nestler EJ (2005) The many faces of CREB. Trends Neurosci 28: 436-445.
Carr GD, Fibiger HC, Phillips AG (1989) Conditioned place preference as a measure of drug reward. In: The neuropharmacological basis of reward (Liebman JM and Cooper SJ, eds.), pp264-319. New York: Oxford U P.
Chen L, Xu M (2010) Dopamine D1 and D3 receptors are differentially involved in cue-elicited cocaine seeking. J Neurochem 114: 530-541.
Conner JM, Lauterborn JC, Yan Q, Gall CM, Varon S (1997) Distribution of brain-derived neurotrophic factor (BDNF) protein and mRNA in the normal adult rat CNS: evidence for anterograde axonal transport. J Neurosci 17: 2295-2313.
Cowansage KK, LeDoux JE, Monfils MH (2010) Brain-derived neurotrophic factor: a dynamic gatekeeper of neural plasticity. Curr Mol Pharmacol 3:12-29.
Crooks KR, Kleven DT, Rodriguiz RM, Wetsel WC, McNamara JO (2010) TrkB signaling is required for behavioral sensitization and conditioned place preference induced by a single injection of cocaine. Neuropharmacology 58: 1067-1077.
Cruz FC, Marin MT, Planeta CS (2008) The reinstatement of amphetamine-induced place preference is long-lasting and related to decreased expression of AMPA receptors in the nucleus accumbens. Neuroscience 151: 313-319.
Cunha C, Brambilla R, Thomas KL (2010) A simple role for BDNF in learning and memory? Front Mol Neurosci 3: 1-14.
Duarte C, Lefebvre C, Chaperon F, Hamon M, Thiébot MH (2003) Effects of a dopamine D3 receptor ligand, BP 897, on acquisition and expression of food-, morphine-, and cocaine-induced conditioned place preference, and food-seeking behavior in rats. Neuropsychopharmacology 28: 1903-1915.
Fuchs RA, Eaddy JL, Su ZI, Bell GH (2007) Interactions of the basolateral amygdala with the dorsal hippocampus and dorsomedial prefrontal cortex regulate drug context-induced reinstatement of cocaine-seeking in rats. Eur J Neurosci 26: 487-498.
Graham DL, Edwards S, Bachtell RK, DiLeone RJ, Rios M, Self DW (2007) Dynamic BDNF activity in nucleus accumbens with cocaine use increases self-administration and relapse. Nat Neurosci 10: 1029-1037.
Graham DL, Hoppenot R, Hendryx A, Self DW (2007) Differential ability of D1 and D2 dopamine receptor agonists to induce and modulate expression and reinstatement of cocaine place preference in rats. Psychopharmacology (Berl) 191: 719-730.
Graham DL, Krishnan V, Larson EB, Graham A, Edwards S, Bachtell RK, Simmons D, Gent LM, Berton O, Bolanos CA, DiLeone RJ, Parada LF, Nestler EJ, Self DW (2009) Tropomyosin-related kinase B in the mesolimbic dopamine system: region-specific effects on cocaine reward. Biol Psychiatry 65: 696-701.
Grimm JW, Lu L, Hayashi T, Hope BT, Su TP, Shaham Y (2003) Time-dependent increases in brain-derived neurotrophic factor protein levels within the mesolimbic dopamine system after withdrawal from cocaine: implications for incubation of cocaine craving. J Neurosci 23: 742-747.
Hall FS, Drgonova J, Goeb M, Uhl GR (2003) Reduced behavioral effects of cocaine in heterozygous brain-derived neurotrophic factor (BDNF) knockout mice. Neuropsychopharmacology 28: 1485-1490.
Hearing MC, Miller SW, See RE, McGinty JF (2008) Relapse to cocaine seeking increases activity-regulated gene expression differentially in the prefrontal cortex of abstinent rats. Psychopharmacology (Berl) 198: 77-91.
Heidbreder CA, Groenewegen HJ (2003) The medial prefrontal cortex in the rat: evidence for a dorso-ventral distinction based upon functional and anatomical characteristics. Neurosci Biobehav Rev 27: 555-579.
Horger BA, Iyasere CA, Berhow MT, Messer CJ, Nestler EJ, Taylor JR (1999) Enhancement of locomotor activity and conditioned reward to cocaine by brain-derived neurotrophic factor. J Neurosci 19: 4110-4122.
Hsu EH, Schroeder JP, Packard MG (2002) The amygdala mediates memory consolidation for an amphetamine conditioned place preference. Behav Brain Res 129: 93-100.
Isaac WL, Nonneman AJ, Neisewander J, Landers T, Bardo MT (1989) Prefrontal cortex lesions differentially disrupt cocaine-reinforced conditioned place preference but not conditioned taste aversion. Behav Neurosci 103: 345-355.
Jones SV, Stanek-Rattiner L, Davis M, Ressler KJ (2007) Differential regional expression of brain-derived neurotrophic factor following olfactory fear learning. Learn Mem 14: 816-820.
Kitanaka N, Kitanaka J, Watabe K, Takemura M (2010) Low-dose pretreatment with clorgyline decreases the levels of 3-methoxy-4-hydroxyphenylglycol in the striatum and nucleus accumbens and attenuates methamphetamine-induced conditioned place preference in rats. Neuroscience 165: 1370-1376.
Kuhar MJ, Ritz MC, Boja JW (1991) The dopamine hypothesis of the reinforcing properties of cocaine. Trends Neurosci 14: 299-302.
Liao RM, Chang YH, Wang SH (1998) Influence of SCH23390 and spiperone on the expression of conditioned place Preference induced by d-amphetamine or cocaine in the rat. Chin J Physiol 41: 85-92.
Linnarsson S, Björklund A, Ernfors P (1997) Learning deficit in BDNF mutant mice. Eur J Neurosci 9: 2581-2587.
Liu S, Zheng D, Peng XX, Cabeza de Vaca S, Carr KD (2011) Enhanced cocaine-conditioned place preference and associated brain regional levels of BDNF, p-ERK1/2 and p-Ser845-GluA1 in food-restricted rats. Brain Res 1400: 31-41.
Lu H, Cheng PL, Lim BK, Khoshnevisrad N, Poo MM (2010) Elevated BDNF after cocaine withdrawal facilitates LTP in medial prefrontal cortex by suppressing GABA inhibition. Neuron 67: 821-833.
Lu L, Dempsey J, Liu SY, Bossert JM, Shaham Y (2004) A single infusion of brain-derived neurotrophic factor into the ventral tegmental area induces long-lasting potentiation of cocaine seeking after withdrawal. J Neurosci 24: 1604-1611.
McFarland K, Lapish CC, Kalivas PW (2003) Prefrontal glutamate release into the core of the nucleus accumbens mediates cocaine-induced reinstatement of drug-seeking behavior. J Neurosci 23: 3531-3537.
McGinty JF, Whitfield TW Jr, Berglind WJ (2010) Brain-derived neurotrophic factor and cocaine addiction. Brain Res 1314: 183-193.
Meredith GE, Callen S, Scheuer DA (2002) Brain-derived neurotrophic factor expression is increased in the rat amygdala, piriform cortex and hypothalamus following repeated amphetamine administration. Brain Res 949: 218-227.
Meyers RA, Zavala AR, Neisewander JL (2003) Dorsal, but not ventral, hippocampal lesions disrupt cocaine place conditioning. Neuroreport 14: 2127-2131.
Mizuno M, Yamada K, Olariu A, Nawa H, Nabeshima T (2000) Involvement of brain-derived neurotrophic factor in spatial memory formation and maintenance in a radial arm maze test in rats. J Neurosci 20: 7116-7121.
Nelson CL, Milovanovic M, Wetter JB, Ford KA, Wolf ME (2009) Behavioral sensitization to amphetamine is not accompanied by changes in glutamate receptor surface expression in the rat nucleus accumbens. J Neurochem 109: 35-51.
Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates. San Diego: Academic Press.
Peters J, LaLumiere RT, Kalivas PW (2008) Infralimbic prefrontal cortex is responsible for inhibiting cocaine seeking in extinguished rats. J Neurosci 28: 6046-6053.
Pu L, Liu QS, Poo MM (2006) BDNF-dependent synaptic sensitization in midbrain dopamine neurons after cocaine withdrawal. Nat Neurosci 9: 605-607.
Romieu P, Meunier J, Garcia D, Zozime N, Martin-Fardon R, Bowen WD, Maurice T (2004) The sigma1 (sigma1) receptor activation is a key step for the reactivation of cocaine conditioned place preference by drug priming. Psychopharmacology (Berl) 175: 154-162.
Russo SJ, Mazei-Robison MS, Ables JL, Nestler EJ (2009) Neurotrophic factors and structural plasticity in addiction. Neuropharmacology 56: 73-82.
Sanchez CJ, Bailie TM, Wu WR, Li N, Sorg BA (2003) Manipulation of dopamine d1-like receptor activation in the rat medial prefrontal cortex alters stress- and cocaine-induced reinstatement of conditioned place preference behavior. Neuroscience 119: 497-505.
Santos AR, Comprido D, Duarte CB (2010) Regulation of local translation at the synapse by BDNF. Prog Neurobiol 92: 505-516.
Saylor AJ, McGinty JF (2008) Amphetamine-induced locomotion and gene expression are altered in BDNF heterozygous mice. Genes Brain Behav 7: 906-914.
Shen F, Meredith GE, Napier TC (2006) Amphetamine-induced place preference and conditioned motor sensitization requires activation of tyrosine kinase receptors in the hippocampus. J Neurosci 26: 11041-11051.
Sun W, Rebec GV (2005) The role of prefrontal cortex D1-like and D2-like receptors in cocaine-seeking behavior in rats. Psychopharmacology (Berl) 177: 315-323.
Tropea TF, Kosofsky BE, Rajadhyaksha AM (2008) Enhanced CREB and DARPP-32 phosphorylation in the nucleus accumbens and CREB, ERK, and GluR1 phosphorylation in the dorsal hippocampus is associated with cocaine-conditioned place preference behavior. J Neurochem 106: 1780-1790.
Tzschentke TM (2007) Measuring reward with the conditioned place preference (CPP) paradigm: update of the last decade. Addict Biol 12: 227-462.
Van den Oever MC, Spijker S, Smit AB, De Vries TJ (2010) Prefrontal cortex plasticity mechanisms in drug seeking and relapse. Neurosci Biobehav Rev 35: 276-284.
Whitfield TW Jr, Shi X, Sun WL, McGinty JF (2011) The suppressive effect of an intra-prefrontal cortical infusion of BDNF on cocaine-seeking is Trk receptor and extracellular signal-regulated protein kinase mitogen-activated protein kinase dependent. J Neurosci 31: 834-842.
Yamada K, Mizuno M, Nabeshima T (2002) Role for brain-derived neurotrophic factor in learning and memory. Life Sci 70: 735-744.
Yamada K, Nabeshima T (2003) Brain-derived neurotrophic factor/TrkB signaling in memory processes. J Pharmacol Sci 91: 267-270.
Zavala AR, Weber SM, Rice HJ, Alleweireldt AT, Neisewander JL (2003) Role of the prelimbic subregion of the medial prefrontal cortex in acquisition, extinction, and reinstatement of cocaine-conditioned place preference. Brain Res 990: 157-164.
描述 碩士
國立政治大學
生命科學研究所
96754007
99
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0096754007
資料類型 thesis
dc.contributor.advisor 廖瑞銘zh_TW
dc.contributor.author (作者) 張庭源zh_TW
dc.creator (作者) 張庭源zh_TW
dc.date (日期) 2010en_US
dc.date.accessioned 29-九月-2011 18:26:09 (UTC+8)-
dc.date.available 29-九月-2011 18:26:09 (UTC+8)-
dc.date.issued (上傳時間) 29-九月-2011 18:26:09 (UTC+8)-
dc.identifier (其他 識別碼) G0096754007en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/50996-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 生命科學研究所zh_TW
dc.description (描述) 96754007zh_TW
dc.description (描述) 99zh_TW
dc.description.abstract (摘要) 制約場地偏好行為為研究藥物成癮的常用模式之一,對於其行為表現及再復發的神經機制,多巴胺系統佔有舉足輕重的地位。而大腦神經滋養因子(BDNF)與多巴胺系統密切相關,影響其神經元可塑性。故本研究以BDNF來作為目標分子,進行一系列的實驗探討制約場地偏好的神經機制。實驗一A以不同劑量安非他命建立制約場地偏好行為,並分析其BDNF mRNA的表現量。實驗結果顯示1 mg/kg安非他命能夠引發制約場地偏好行為,但是對於內側前額葉、紋狀體、依核、背側海馬迴、杏仁核等五個區塊的BDNF mRNA無顯著的影響效果。實驗一B再次確認實驗一A的結果,顯示俱有安非他命引發制約場地偏好行為的受試,其大腦五個區塊BDNF mRNA沒有顯著的變化。實驗二探測制約場地偏好行為再復發對於相同的五個區塊BDNF mRNA變化。結果發現0.75 mg/kg安非他命能誘發制約場地偏好再復發行為,並且能引發內側前額葉中BDNF mRNA的增加,但對其餘四個區塊則無明顯的影響效果。實驗三以單次注射安非他命探討對於BDNF mRNA是否有立即性的影響,結果顯示五個區塊皆無明顯的變化。實驗四以安非他命引發的行為致敏化反應為行為模式,偵測BDNF mRNA的表現情形。結果發現藥物制約配對組與單次注射安非他命組在活動量上無顯著的差異,顯示出無行為致敏化反應的發生。檢驗五個區塊BDNF mRNA的表現,亦沒有發現明顯的改變。綜合以上的實驗結果,本研究得到安非他命制約場地偏好再復發行為,會伴隨內側前額葉BDNF mRNA的增加。而單獨的安非他命引發制約場地偏好行為,並不會改變BDNF mRNA。這些結果顯示BDNF參與在較複雜的制約學習行為歷程,而不是在單獨的藥物注射或與環境配對的制約過程。zh_TW
dc.description.abstract (摘要) Conditioned place preference (CPP) is widely used as an experimental behavioral model in the study of drug addiction and reward learning. Brain dopamine systems play an important role to drive the CPP performance and its relapse. Brain-derived neurotrophic factor (BDNF) is closely related to dopamine system that can promote neuron plasticity involved in certain types of behavior. Taking BDNF as the target molecule, this project conducted a series of experiments to delve into the neural mechanism of CPP. Different doses of amphetamine on the CPP behavior were assessed in Experiment 1A, and BDNF mRNA was tested after CPP test. The results show that 1 mg/kg amphetamine significantly induced CPP, but no significant effect on BDNF mRNA in any of five brain areas tested, including medial prefrontal cortex, striatum, nucleus accumbens, dorsal hippocampus and amygdala. The results of Experiment 1A was further confirmed by Experiment 1B, indicating no significant change on BDNF mRNA in five brain areas of rats with significant amphetamine-induced CPP. Experiment 2 examined the effects of CPP relapse and tested BDNF mRNA in the aforementioned five brain areas. The results show that 0.75 mg/kg amphetamine significantly induced CPP relapse and also increased BDNF mRNA level in medial prefrontal cortex. Such an increase of BDNF mRNA was not observed in any other four areas. Single acute injection of amphetamine was administered in Experiment 3 to delve into the possible immediate drug effect on BDNF mRNA. Its results show no significant change on five brain areas following this acute drug treatment. Experiment 4 used amphetamine-induced behavioral sensitization as a behavioral mode to determine the expression of BDNF mRNA. The results show no significant difference both for amphetamine-paired group and acute amphetamine group on locomotion, that indicated no behavioral sensitization formed in this test. There was no significant difference in the expression of BDNF mRNA in five brain areas. These results indicate that amphetamine-induced CPP relapse, but not CPP performance itself, is accompanied by the increase of BDNF mRNA level in medial prefrontal cortex. These findings indicate that BDNF is involved in place conditioning formed by psychostimulant drug when it is reinstated after extinction, rather than by a solitary drug injection or a relatively simple conditioning process by pairing drug with the environmental context.en_US
dc.description.tableofcontents 中文摘要……………………………………………………………………......I
     英文摘要……………………………………………………………………….II
     圖 次…………………………………………………………………….......VI
     縮寫對照表…………………………………………………………………...IX
     緒 論……………………………………………………………………......01
     一、前言……………………………………………………………………01
     二、制約場地偏好行為……………………………………………………01
     三、再復發行為………………………………………………………….. 03
     四、大腦神經滋養因子……………………………………………………04
     五、研究目的與實驗設計…………………………………………………07
     材料與方法…………………………………………………………………...08
     一、受試……………………………………………………………………08
     二、藥物……………………………………………………………………08
     三、制約場地偏好行為儀器………………………………………………08
     四、安非他命引發制約場地偏好行為程序………………………………09
     五、安非他命引發制約場地偏好的再復發行為程序……………………10
     六、安非他命引發行為致敏化程序………………………………………11
     七、動物犧牲、冷凍切片與神經組織之取樣……………………………12
     八、核糖核酸之萃取……………………………………………………….13
     九、去氧核糖核酸之清除………………………………………………….14
     十、反轉錄作用……………………………………………………………14
     十一、即時定量聚合酶反應………………………………………………14
     十二、統計方法……………………………………………………………15
     結 果……………………………………………………………………......17
     實驗一A、不同劑量安非他命引發制約場地偏好行為表現對於BDNF mRNA表現量的影響………………………………………....................17
     實驗一B、安非他命建立制約場地偏好行為表現對於BDNF mRNA表現量的影響…………………………………………………………………...17
     實驗二、安非他命引發制約場地偏好再復發行為對於BDNF mRNA表現量的影響…………………………………………………………………...18
     實驗三、單次安非他命注射對於BDNF mRNA表現量的影響…………18
     實驗四、安非他命引發行為致敏化對於BDNF mRNA表現量的影響…19
     討 論……………………………………………………………………...21
     參考文獻……………………………………………………………………...30
     附 圖……………………………………………………………………….39
     附錄一………………………………………………………………………...71
     附錄二………………………………………………………………………...72
     附錄三………………………………………………………………………...73
     附錄四………………………………………………………………………...74
zh_TW
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0096754007en_US
dc.subject (關鍵詞) 安非他命zh_TW
dc.subject (關鍵詞) 制約場地偏好zh_TW
dc.subject (關鍵詞) 再復發行為zh_TW
dc.subject (關鍵詞) 行為致敏化zh_TW
dc.subject (關鍵詞) 大腦神經滋養因子zh_TW
dc.subject (關鍵詞) 大白鼠zh_TW
dc.subject (關鍵詞) amphetamineen_US
dc.subject (關鍵詞) conditioned place preferenceen_US
dc.subject (關鍵詞) relapseen_US
dc.subject (關鍵詞) behavioral sensitizationen_US
dc.subject (關鍵詞) BDNFen_US
dc.subject (關鍵詞) raten_US
dc.title (題名) 探討安非他命引發的制約場地偏好行為的分子機制:以大腦神經滋養因子為例zh_TW
dc.title (題名) Investigation of molecular mechanisms on amphetamine induced conditioned place preference: the role of Brain-Derived Neurotrophic Factor (BDNF)en_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) Alonso M, Vianna MR, Depino, AM, Mello e Souza T, Pereira P, Szapiro G, Viola H, Pitossi F, Izquierdo I, Medina JH (2002) BDNF-triggered events in the rat hippocampus are required for both short- and long-term memory formation. Hippocampus 12: 551-560.zh_TW
dc.relation.reference (參考文獻) Aguilar-Valles A, Sánchez E, de Gortari P, Balderas I, Ramírez-Amaya V, Bermúdez-Rattoni F, Joseph-Bravo P (2005) Analysis of the stress response in rats trained in the water-maze: differential expression of corticotropin-releasing hormone, CRH-R1, glucocorticoid receptors and brain-derived neurotrophic factor in limbic regions. Neuroendocrinology 82: 306-319.zh_TW
dc.relation.reference (參考文獻) Bahi A, Boyer F, Chandrasekar V, Dreyer JL (2008) Role of accumbens BDNF and TrkB in cocaine-induced psychomotor sensitization, conditioned-place preference, and reinstatement in rats. Psychopharmacology (Berl) 199: 169-182.zh_TW
dc.relation.reference (參考文獻) Banerjee PS, Aston J, Khundakar AA, Zetterström TS (2009) Differential regulation of psychostimulant-induced gene expression of brain derived neurotrophic factor and the immediate-early gene Arc in the juvenile and adult brain. Eur J Neurosci 29: 465-476.zh_TW
dc.relation.reference (參考文獻) Barde YA, Edgar D, Thoenen H (1982) Purification of a new neurotrophic factor from mammalian brain. EMBO J 1: 549-553.zh_TW
dc.relation.reference (參考文獻) Bardo MT, Bevins RA (2000) Conditioned place preference: what does it add to our preclinical understanding of drug reward? Psychopharmacology (Berl) 153: 31-43.zh_TW
dc.relation.reference (參考文獻) Berglind WJ, See RE, Fuchs, RA, Ghee SM, Whitfield TW Jr, Miller SW, McGinty JF (2007) A BDNF infusion into the medial prefrontal cortex suppresses cocaine seeking in rats. Eur J Neurosci 26: 757-766.zh_TW
dc.relation.reference (參考文獻) Berglind WJ, Whitfield TW Jr, LaLumiere RT, Kalivas PW, McGinty JF (2009) A single intra-PFC infusion of BDNF prevents cocaine-induced alterations in extracellular glutamate within the nucleus accumbens. J Neurosci 29: 3715-3719.zh_TW
dc.relation.reference (參考文獻) Botreau F, Paolone G, Stewart J (2006) D-Cycloserine facilitates extinction of a cocaine-induced conditioned place preference. Behav Brain Res 172: 173-178.zh_TW
dc.relation.reference (參考文獻) Boutrel B, Koob GF (2004) What keeps us awake: the neuropharmacology of stimulants and wakefulness-promoting medications. Sleep 27: 1181-1194.zh_TW
dc.relation.reference (參考文獻) Brown RM, Short JL, Lawrence AJ (2010) Identification of brain nuclei implicated in cocaine-primed reinstatement of conditioned place preference: a behaviour dissociable from sensitization. PLoS One 5: 1-13.zh_TW
dc.relation.reference (參考文獻) Carlezon WA Jr, Duman RS, Nestler EJ (2005) The many faces of CREB. Trends Neurosci 28: 436-445.zh_TW
dc.relation.reference (參考文獻) Carr GD, Fibiger HC, Phillips AG (1989) Conditioned place preference as a measure of drug reward. In: The neuropharmacological basis of reward (Liebman JM and Cooper SJ, eds.), pp264-319. New York: Oxford U P.zh_TW
dc.relation.reference (參考文獻) Chen L, Xu M (2010) Dopamine D1 and D3 receptors are differentially involved in cue-elicited cocaine seeking. J Neurochem 114: 530-541.zh_TW
dc.relation.reference (參考文獻) Conner JM, Lauterborn JC, Yan Q, Gall CM, Varon S (1997) Distribution of brain-derived neurotrophic factor (BDNF) protein and mRNA in the normal adult rat CNS: evidence for anterograde axonal transport. J Neurosci 17: 2295-2313.zh_TW
dc.relation.reference (參考文獻) Cowansage KK, LeDoux JE, Monfils MH (2010) Brain-derived neurotrophic factor: a dynamic gatekeeper of neural plasticity. Curr Mol Pharmacol 3:12-29.zh_TW
dc.relation.reference (參考文獻) Crooks KR, Kleven DT, Rodriguiz RM, Wetsel WC, McNamara JO (2010) TrkB signaling is required for behavioral sensitization and conditioned place preference induced by a single injection of cocaine. Neuropharmacology 58: 1067-1077.zh_TW
dc.relation.reference (參考文獻) Cruz FC, Marin MT, Planeta CS (2008) The reinstatement of amphetamine-induced place preference is long-lasting and related to decreased expression of AMPA receptors in the nucleus accumbens. Neuroscience 151: 313-319.zh_TW
dc.relation.reference (參考文獻) Cunha C, Brambilla R, Thomas KL (2010) A simple role for BDNF in learning and memory? Front Mol Neurosci 3: 1-14.zh_TW
dc.relation.reference (參考文獻) Duarte C, Lefebvre C, Chaperon F, Hamon M, Thiébot MH (2003) Effects of a dopamine D3 receptor ligand, BP 897, on acquisition and expression of food-, morphine-, and cocaine-induced conditioned place preference, and food-seeking behavior in rats. Neuropsychopharmacology 28: 1903-1915.zh_TW
dc.relation.reference (參考文獻) Fuchs RA, Eaddy JL, Su ZI, Bell GH (2007) Interactions of the basolateral amygdala with the dorsal hippocampus and dorsomedial prefrontal cortex regulate drug context-induced reinstatement of cocaine-seeking in rats. Eur J Neurosci 26: 487-498.zh_TW
dc.relation.reference (參考文獻) Graham DL, Edwards S, Bachtell RK, DiLeone RJ, Rios M, Self DW (2007) Dynamic BDNF activity in nucleus accumbens with cocaine use increases self-administration and relapse. Nat Neurosci 10: 1029-1037.zh_TW
dc.relation.reference (參考文獻) Graham DL, Hoppenot R, Hendryx A, Self DW (2007) Differential ability of D1 and D2 dopamine receptor agonists to induce and modulate expression and reinstatement of cocaine place preference in rats. Psychopharmacology (Berl) 191: 719-730.zh_TW
dc.relation.reference (參考文獻) Graham DL, Krishnan V, Larson EB, Graham A, Edwards S, Bachtell RK, Simmons D, Gent LM, Berton O, Bolanos CA, DiLeone RJ, Parada LF, Nestler EJ, Self DW (2009) Tropomyosin-related kinase B in the mesolimbic dopamine system: region-specific effects on cocaine reward. Biol Psychiatry 65: 696-701.zh_TW
dc.relation.reference (參考文獻) Grimm JW, Lu L, Hayashi T, Hope BT, Su TP, Shaham Y (2003) Time-dependent increases in brain-derived neurotrophic factor protein levels within the mesolimbic dopamine system after withdrawal from cocaine: implications for incubation of cocaine craving. J Neurosci 23: 742-747.zh_TW
dc.relation.reference (參考文獻) Hall FS, Drgonova J, Goeb M, Uhl GR (2003) Reduced behavioral effects of cocaine in heterozygous brain-derived neurotrophic factor (BDNF) knockout mice. Neuropsychopharmacology 28: 1485-1490.zh_TW
dc.relation.reference (參考文獻) Hearing MC, Miller SW, See RE, McGinty JF (2008) Relapse to cocaine seeking increases activity-regulated gene expression differentially in the prefrontal cortex of abstinent rats. Psychopharmacology (Berl) 198: 77-91.zh_TW
dc.relation.reference (參考文獻) Heidbreder CA, Groenewegen HJ (2003) The medial prefrontal cortex in the rat: evidence for a dorso-ventral distinction based upon functional and anatomical characteristics. Neurosci Biobehav Rev 27: 555-579.zh_TW
dc.relation.reference (參考文獻) Horger BA, Iyasere CA, Berhow MT, Messer CJ, Nestler EJ, Taylor JR (1999) Enhancement of locomotor activity and conditioned reward to cocaine by brain-derived neurotrophic factor. J Neurosci 19: 4110-4122.zh_TW
dc.relation.reference (參考文獻) Hsu EH, Schroeder JP, Packard MG (2002) The amygdala mediates memory consolidation for an amphetamine conditioned place preference. Behav Brain Res 129: 93-100.zh_TW
dc.relation.reference (參考文獻) Isaac WL, Nonneman AJ, Neisewander J, Landers T, Bardo MT (1989) Prefrontal cortex lesions differentially disrupt cocaine-reinforced conditioned place preference but not conditioned taste aversion. Behav Neurosci 103: 345-355.zh_TW
dc.relation.reference (參考文獻) Jones SV, Stanek-Rattiner L, Davis M, Ressler KJ (2007) Differential regional expression of brain-derived neurotrophic factor following olfactory fear learning. Learn Mem 14: 816-820.zh_TW
dc.relation.reference (參考文獻) Kitanaka N, Kitanaka J, Watabe K, Takemura M (2010) Low-dose pretreatment with clorgyline decreases the levels of 3-methoxy-4-hydroxyphenylglycol in the striatum and nucleus accumbens and attenuates methamphetamine-induced conditioned place preference in rats. Neuroscience 165: 1370-1376.zh_TW
dc.relation.reference (參考文獻) Kuhar MJ, Ritz MC, Boja JW (1991) The dopamine hypothesis of the reinforcing properties of cocaine. Trends Neurosci 14: 299-302.zh_TW
dc.relation.reference (參考文獻) Liao RM, Chang YH, Wang SH (1998) Influence of SCH23390 and spiperone on the expression of conditioned place Preference induced by d-amphetamine or cocaine in the rat. Chin J Physiol 41: 85-92.zh_TW
dc.relation.reference (參考文獻) Linnarsson S, Björklund A, Ernfors P (1997) Learning deficit in BDNF mutant mice. Eur J Neurosci 9: 2581-2587.zh_TW
dc.relation.reference (參考文獻) Liu S, Zheng D, Peng XX, Cabeza de Vaca S, Carr KD (2011) Enhanced cocaine-conditioned place preference and associated brain regional levels of BDNF, p-ERK1/2 and p-Ser845-GluA1 in food-restricted rats. Brain Res 1400: 31-41.zh_TW
dc.relation.reference (參考文獻) Lu H, Cheng PL, Lim BK, Khoshnevisrad N, Poo MM (2010) Elevated BDNF after cocaine withdrawal facilitates LTP in medial prefrontal cortex by suppressing GABA inhibition. Neuron 67: 821-833.zh_TW
dc.relation.reference (參考文獻) Lu L, Dempsey J, Liu SY, Bossert JM, Shaham Y (2004) A single infusion of brain-derived neurotrophic factor into the ventral tegmental area induces long-lasting potentiation of cocaine seeking after withdrawal. J Neurosci 24: 1604-1611.zh_TW
dc.relation.reference (參考文獻) McFarland K, Lapish CC, Kalivas PW (2003) Prefrontal glutamate release into the core of the nucleus accumbens mediates cocaine-induced reinstatement of drug-seeking behavior. J Neurosci 23: 3531-3537.zh_TW
dc.relation.reference (參考文獻) McGinty JF, Whitfield TW Jr, Berglind WJ (2010) Brain-derived neurotrophic factor and cocaine addiction. Brain Res 1314: 183-193.zh_TW
dc.relation.reference (參考文獻) Meredith GE, Callen S, Scheuer DA (2002) Brain-derived neurotrophic factor expression is increased in the rat amygdala, piriform cortex and hypothalamus following repeated amphetamine administration. Brain Res 949: 218-227.zh_TW
dc.relation.reference (參考文獻) Meyers RA, Zavala AR, Neisewander JL (2003) Dorsal, but not ventral, hippocampal lesions disrupt cocaine place conditioning. Neuroreport 14: 2127-2131.zh_TW
dc.relation.reference (參考文獻) Mizuno M, Yamada K, Olariu A, Nawa H, Nabeshima T (2000) Involvement of brain-derived neurotrophic factor in spatial memory formation and maintenance in a radial arm maze test in rats. J Neurosci 20: 7116-7121.zh_TW
dc.relation.reference (參考文獻) Nelson CL, Milovanovic M, Wetter JB, Ford KA, Wolf ME (2009) Behavioral sensitization to amphetamine is not accompanied by changes in glutamate receptor surface expression in the rat nucleus accumbens. J Neurochem 109: 35-51.zh_TW
dc.relation.reference (參考文獻) Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates. San Diego: Academic Press.zh_TW
dc.relation.reference (參考文獻) Peters J, LaLumiere RT, Kalivas PW (2008) Infralimbic prefrontal cortex is responsible for inhibiting cocaine seeking in extinguished rats. J Neurosci 28: 6046-6053.zh_TW
dc.relation.reference (參考文獻) Pu L, Liu QS, Poo MM (2006) BDNF-dependent synaptic sensitization in midbrain dopamine neurons after cocaine withdrawal. Nat Neurosci 9: 605-607.zh_TW
dc.relation.reference (參考文獻) Romieu P, Meunier J, Garcia D, Zozime N, Martin-Fardon R, Bowen WD, Maurice T (2004) The sigma1 (sigma1) receptor activation is a key step for the reactivation of cocaine conditioned place preference by drug priming. Psychopharmacology (Berl) 175: 154-162.zh_TW
dc.relation.reference (參考文獻) Russo SJ, Mazei-Robison MS, Ables JL, Nestler EJ (2009) Neurotrophic factors and structural plasticity in addiction. Neuropharmacology 56: 73-82.zh_TW
dc.relation.reference (參考文獻) Sanchez CJ, Bailie TM, Wu WR, Li N, Sorg BA (2003) Manipulation of dopamine d1-like receptor activation in the rat medial prefrontal cortex alters stress- and cocaine-induced reinstatement of conditioned place preference behavior. Neuroscience 119: 497-505.zh_TW
dc.relation.reference (參考文獻) Santos AR, Comprido D, Duarte CB (2010) Regulation of local translation at the synapse by BDNF. Prog Neurobiol 92: 505-516.zh_TW
dc.relation.reference (參考文獻) Saylor AJ, McGinty JF (2008) Amphetamine-induced locomotion and gene expression are altered in BDNF heterozygous mice. Genes Brain Behav 7: 906-914.zh_TW
dc.relation.reference (參考文獻) Shen F, Meredith GE, Napier TC (2006) Amphetamine-induced place preference and conditioned motor sensitization requires activation of tyrosine kinase receptors in the hippocampus. J Neurosci 26: 11041-11051.zh_TW
dc.relation.reference (參考文獻) Sun W, Rebec GV (2005) The role of prefrontal cortex D1-like and D2-like receptors in cocaine-seeking behavior in rats. Psychopharmacology (Berl) 177: 315-323.zh_TW
dc.relation.reference (參考文獻) Tropea TF, Kosofsky BE, Rajadhyaksha AM (2008) Enhanced CREB and DARPP-32 phosphorylation in the nucleus accumbens and CREB, ERK, and GluR1 phosphorylation in the dorsal hippocampus is associated with cocaine-conditioned place preference behavior. J Neurochem 106: 1780-1790.zh_TW
dc.relation.reference (參考文獻) Tzschentke TM (2007) Measuring reward with the conditioned place preference (CPP) paradigm: update of the last decade. Addict Biol 12: 227-462.zh_TW
dc.relation.reference (參考文獻) Van den Oever MC, Spijker S, Smit AB, De Vries TJ (2010) Prefrontal cortex plasticity mechanisms in drug seeking and relapse. Neurosci Biobehav Rev 35: 276-284.zh_TW
dc.relation.reference (參考文獻) Whitfield TW Jr, Shi X, Sun WL, McGinty JF (2011) The suppressive effect of an intra-prefrontal cortical infusion of BDNF on cocaine-seeking is Trk receptor and extracellular signal-regulated protein kinase mitogen-activated protein kinase dependent. J Neurosci 31: 834-842.zh_TW
dc.relation.reference (參考文獻) Yamada K, Mizuno M, Nabeshima T (2002) Role for brain-derived neurotrophic factor in learning and memory. Life Sci 70: 735-744.zh_TW
dc.relation.reference (參考文獻) Yamada K, Nabeshima T (2003) Brain-derived neurotrophic factor/TrkB signaling in memory processes. J Pharmacol Sci 91: 267-270.zh_TW
dc.relation.reference (參考文獻) Zavala AR, Weber SM, Rice HJ, Alleweireldt AT, Neisewander JL (2003) Role of the prelimbic subregion of the medial prefrontal cortex in acquisition, extinction, and reinstatement of cocaine-conditioned place preference. Brain Res 990: 157-164.zh_TW