dc.contributor.advisor | 翁久幸 | zh_TW |
dc.contributor.advisor | Weng, Chiu Hsing | en_US |
dc.contributor.author (作者) | 許正宏 | zh_TW |
dc.contributor.author (作者) | Hsu, Cheng Hung | en_US |
dc.creator (作者) | 許正宏 | zh_TW |
dc.creator (作者) | Hsu, Cheng Hung | en_US |
dc.date (日期) | 2010 | en_US |
dc.date.accessioned | 5-十月-2011 14:31:53 (UTC+8) | - |
dc.date.available | 5-十月-2011 14:31:53 (UTC+8) | - |
dc.date.issued (上傳時間) | 5-十月-2011 14:31:53 (UTC+8) | - |
dc.identifier (其他 識別碼) | G0093354504 | en_US |
dc.identifier.uri (URI) | http://nccur.lib.nccu.edu.tw/handle/140.119/51199 | - |
dc.description (描述) | 博士 | zh_TW |
dc.description (描述) | 國立政治大學 | zh_TW |
dc.description (描述) | 統計研究所 | zh_TW |
dc.description (描述) | 93354504 | zh_TW |
dc.description (描述) | 99 | zh_TW |
dc.description.abstract (摘要) | 本論文主要討論貝氏漸近的比較,推導出參數的聯合後驗分配與利用圖形來診斷馬可夫鏈蒙地卡羅的收斂。Johnson (1970)利用泰勒展開式得到個別後驗分配的展開式,此展開式是根據概似函數與先驗分配。 Weng (2010b) 和 Weng and Hsu (2011) 利用 Stein’s 等式且由概似函數與先驗分配估計後驗動差;將這些後驗動差代入Edgeworth 展開式得到近似後驗分配,此近似分配的誤差可精確到大O的負3/2次方與Johnson’s 相同。另外Weng and Hsu (2011)發現Weng (2010b) 和Johnson (1970)的近似展開式各別項誤差到大O的負1次方不一致,由模擬結果得到Weng’s 在此項表現比Johnson’s 好。另外由Weng (2010b)得到一維參數 的Edgeworth 近似後驗分配延伸到二維參數的聯合後驗分配;並應用二維參數的聯合後驗分配於多階段資料。本論文我們提出利用圖形來診斷馬可夫鏈蒙地卡羅收斂的方法,並且應用一般化線性模型與混合常態模型做為模擬。關鍵字: Edgeworth 展開式;馬可夫鏈蒙地卡羅;個別後驗分配;Stein’s 等式 | zh_TW |
dc.description.abstract (摘要) | Johnson (1970) obtained expansions for marginal posteriordistributions through Taylor expansions. The expansion inJohnson (1970) is expressed in terms of the likelihood and the prior. Weng (2010b) and Weng and Hsu (2011) showed that by usingStein`s identity we can approximate the posterior moments in termsof the likelihood and the prior; then substituting theseapproximations into an Edgeworth series one can obtain an expansionwhich is correct to O(t{-3/2}), similar to Johnson`s.Weng and Hsu (2011) found that the O(t{-1}) terms inWeng (2010b) and Johnson (1970) do not agree and furthercompared these two expansions by simulation study. The simulationsconfirmed this finding and revealed that our O(t{-1}) term givesbetter performance than Johnson`s. In addition to the comparison ofBayesian asymptotics, we try to extend Weng (2010a)`s Edgeworthseries for the distribution of a single parameter to the jointdistribution of all parameters. Since the calculation is quitecomplicated, we only derive expansions for the two-parameter caseand apply it to the experiment of multi-stage data. Markov ChainMonte Carlo (MCMC) is a popular method for making Bayesianinference. However, convergence of the chain is always an issue.Most of convergence diagnosis in the literature is based solely onthe simulation output. In this dissertation, we proposed a graphicalmethod for convergence diagnosis of the MCMC sequence. We used somegeneralized linear models and mixture normal models for simulationstudy. In summary, the goals of this dissertation are threefold: tocompare some results in Bayesian asymptotics, to study the expansionfor the joint distribution of the parameters and its applications,and to propose a method for convergence diagnosis of the MCMC sequence.Key words: Edgeworth expansion; Markov Chain Monte Carlo;marginal posterior distribution; Stein`s identity. | en_US |
dc.description.tableofcontents | 1 Introduction 12 Preliminaries 32.1 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32.2 Stein’s Identity and Bayesian Edgeworth Expansion . . . . . . . . . . . . .42.3 The Laplace Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72.4 The Gibbs Sampling and MCMC Convergence Diagnostic . . . . . . . . . . 82.5 The Generalized Linear Model . . . . . . . . . . . . . . . . . . . . . . . . .93 Theoretical Results 103.1 Validation of Simulation Results . . . . . . . . . . . . . . . . . . . . . . . .103.2 Joint Posterior Distributions . . . . . . . . . . . . . . . . . . . . . . . . . .134 Experimental Results 204.1 Comparison of Second Order Approximations . . . . . . . . . . . . . . . . .204.1.1 Comparison with Johnson (1970) . . . . . . . . . . . . . . . . . . . . 204.1.2 Comparison with Tierney and Kadane (1986) . . . . . . . . . . . . . 254.2 Multi-stage Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .274.2.1 Binomial Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .284.2.2 Two-parameter Logit Model . . . . . . . . . . . . . . . . . . . . . . . 294.3 Logit Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .294.4 Poisson Regression Model . . . . . . . . . . . . . . . . . . . . . . . . . . . .314.5 Gamma Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .334.6 Mixture Normal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .345 Concluding Remarks..................37 | zh_TW |
dc.language.iso | en_US | - |
dc.source.uri (資料來源) | http://thesis.lib.nccu.edu.tw/record/#G0093354504 | en_US |
dc.subject (關鍵詞) | Edgeworth 展開式 | zh_TW |
dc.subject (關鍵詞) | 馬可夫鏈蒙地卡羅 | zh_TW |
dc.subject (關鍵詞) | 個別後驗分配 | zh_TW |
dc.subject (關鍵詞) | Stein’s 等式 | zh_TW |
dc.subject (關鍵詞) | Edgeworth expansion | en_US |
dc.subject (關鍵詞) | Markov chain Monte Carlo | en_US |
dc.subject (關鍵詞) | marginal posterior distribution | en_US |
dc.subject (關鍵詞) | Stein`s identity | en_US |
dc.title (題名) | 馬可夫鏈蒙地卡羅收斂的研究與貝氏漸進的表現 | zh_TW |
dc.title (題名) | A study of mcmc convergence and performance evaluation of bayesian asymptotics | en_US |
dc.type (資料類型) | thesis | en |
dc.relation.reference (參考文獻) | Albert, J. H. and Chib, S. (1993), “Bayesian analysis of binary and polychotomous responsedata”, Journal of the American Statistical Association, 88, 669–679. | zh_TW |
dc.relation.reference (參考文獻) | Brooks, S. P. and Gelman, A. (1998), “General methods for monitoring convergence ofiterative simulations”, Journal of Computational and Graphical Statistics, 7, 434–455. | zh_TW |
dc.relation.reference (參考文獻) | Dellaportas, P. and Smith, A. F. M. (1993), “Bayesian inference for generalized linear andproportional hazards models via gibbs sampling”, Appl. Statist., 42, 443–460. | zh_TW |
dc.relation.reference (參考文獻) | Erdelyi, A. (1956), Asympotic Expansions, New York: Dover Publications. | zh_TW |
dc.relation.reference (參考文獻) | Finney, D. J. (1947), “The estimation from individual records of the relationship betweendose and quantal response”, Biometrika, 34, 320–334. | zh_TW |
dc.relation.reference (參考文獻) | Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (1995), Bayesian data analysis,New York : Chapman and Hall.4. | zh_TW |
dc.relation.reference (參考文獻) | Gelman, A. and Rubin, D. B. (1992), “Inference form iterative simulation using multiplesequences”, Statistical Science, 7, 457–511. | zh_TW |
dc.relation.reference (參考文獻) | Geman, S. and Geman, D. (1984), “Stochastic relaxation, gibbs distributions and thebayesian restoration of images”, IEEE Trans. Pattn. Anal. Mach. Intel, 6, 721–741. | zh_TW |
dc.relation.reference (參考文獻) | Gilks, W. R., Richardson, S., and Spiegelhalter, D. J. (1995), Markov Chain Monte Carloin Practice, London: Chapman and Hall. | zh_TW |
dc.relation.reference (參考文獻) | Gilks, W. R. and Wild, P. (1992), “Adaptive rejection sampling for gibbs sampling”, Appl.Statist., 41, 337–348. | zh_TW |
dc.relation.reference (參考文獻) | Glickman, Mark E. (1993), “Paired comparison models with time-varying parameters”,Ph.D. thesis, Department of Statistics, Harvard University. | zh_TW |
dc.relation.reference (參考文獻) | Hinde, J. (1982), Compound Poisson regression models, New York: Springer. | zh_TW |
dc.relation.reference (參考文獻) | Hurn, M. W., Barker, N. W., and Magath, T. D. (1945), “The determination of prothrombintime following the administration of dicumarol with specific reference to thromboplastin”,Med., 30, 432–447. | zh_TW |
dc.relation.reference (參考文獻) | Johnson, R. (1967), “An asymptotic expansion for posterior distributions”, Ann. Math.Statist., 38, 1899–1906. | zh_TW |
dc.relation.reference (參考文獻) | Johnson, R. (1970), “Asymptotic expansions associated with posterior distributions”, Ann. Math. Statist., 41, 851–864. | zh_TW |
dc.relation.reference (參考文獻) | Kutner, M. H., Nachtsheim, C. J., and Neter, J. (2004), Applied linear regression models,Boston: McGraw. | zh_TW |
dc.relation.reference (參考文獻) | Lunn, D.J., Thomas, A., Best, N., and Spiegelhalter, D. (2000), “Winbugs – a Bayesian modelling framework: concepts structure and extensibility”, Statistics and Computing,10, 325–337. | zh_TW |
dc.relation.reference (參考文獻) | Martin, Andrew D., Quinn, Kevin M., and Park, Jong Hee (2010), “MCMCpack: | zh_TW |
dc.relation.reference (參考文獻) | Markov chain Monte Carlo (MCMC) Package”, R package version 2.10.0, URL | zh_TW |
dc.relation.reference (參考文獻) | http://CRAN.R-project.org/package=MCMCpack. | zh_TW |
dc.relation.reference (參考文獻) | McCullagh, P. and Nelder, J. A. (1989), Generalized linear models, New York : Chapman | zh_TW |
dc.relation.reference (參考文獻) | and Hall. | zh_TW |
dc.relation.reference (參考文獻) | Mendenhall, W. M., Parsons, J. T., Stringer, S. P., Cassissi, N. J., and Million, R. R.(1989), “T2 oral tongue carcinoma treated with radiotherapy: analysis of local control and complications”, Radiotherapy and Oncology, 16, 275–282. | zh_TW |
dc.relation.reference (參考文獻) | Minka, T. P. (2001), “A family of algorithms for approximate bayesian inference”, Department of Electrical Engineering and Computer Science, 1–75. | zh_TW |
dc.relation.reference (參考文獻) | Myers, R. H. (1990), Classical and Modern Regression with Applications, Boston: PWSKent. | zh_TW |
dc.relation.reference (參考文獻) | R Development Core Team (2010), “R: A language and environment for statistical computing”, R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0, URL http://www.R-project.org. | zh_TW |
dc.relation.reference (參考文獻) | Tanner, M. A. (1993), Tools for Statistical Inference, New York: Springer. | zh_TW |
dc.relation.reference (參考文獻) | Tierney, L. and Kadane, J. B. (1986), “Accurate approximations for posterior moments and marginal densities”, Journal of the American Statistical Association, 81, 82–86. | zh_TW |
dc.relation.reference (參考文獻) | Weng, R. C. (2003), “On Stein’s identity for posterior normality”, Statistica Sinica, 13, 495–506. | zh_TW |
dc.relation.reference (參考文獻) | Weng, R. C. (2010a), “A Bayesian Edgeworth expansion by Stein’s Identity”, Bayesian Analysis, 5, 741–764. | zh_TW |
dc.relation.reference (參考文獻) | Weng, R. C. (2010b), “A note on posterior distributions”, in JSM Proceedings, Section on | zh_TW |
dc.relation.reference (參考文獻) | Bayesian Statistical Science, 2599–2608, Alexandria, VA: American Statistical Association. | zh_TW |
dc.relation.reference (參考文獻) | Weng, R. C. and Hsu, C.-H. (2011), “A study of expansions of posterior distributions”, Communications in Statistics - Theory and Methods. | zh_TW |
dc.relation.reference (參考文獻) | Weng, R. C. and Tsai, W.-C. (2008), “Asymptotic posterior normality for multiparameter problems”, Journal of Statistical Planning and Inference, 138, 4068–4080. | zh_TW |
dc.relation.reference (參考文獻) | Woodroofe, M. (1989), “Very weak expansions for sequentially designed experiments: linear models”, Ann. Statist., 17, 1087–1102. | zh_TW |