學術產出-學位論文

文章檢視/開啟

書目匯出

Google ScholarTM

政大圖書館

引文資訊

TAIR相關學術產出

題名 動態社會網路之趨勢指標發展與應用之研究─以政府官員異動為例
Development and application of trend metrics in dynamic social networks─a case study in government officials changes
作者 鄭遠祥
Cheng, Yuan Hsiang
貢獻者 劉吉軒
Liu, Jyi Shane
鄭遠祥
Cheng, Yuan Hsiang
關鍵詞 動態網路分析
社會網路分析
政府官員異動
政治權力關係
資料探勘
資料分析
Dynamic Network Analysis
Social Network Analysis
Government official’s changing
Political power relations
Data Mining
Data Analysis
日期 2010
上傳時間 5-十月-2011 14:43:53 (UTC+8)
摘要 對於零碎且結構複雜的資料來源時,社會網路分析能夠給予整體性的觀察,還能檢視個體之間的關係。目前社會網路分析研究中,因為將網路退化至簡單連結關係,所以會遺失許多珍貴的資訊。而網路規模和型態隨著研究議題的不同,也會跟著增大或趨於多變,但動態網路分析能夠提供我們檢視每個時期,網路的變化或社群的形成或消失,甚至能知道節點間的互動影響。本論文研究,以政府人事異動資料為主,並且加入了其他政府組織的相關資料,建構出政府組織的從屬網路,並在每個網路快照中,擷取出重要的官員異動;每一筆人事異動都是一個事件的發生,而特任或簡任官員在本研究中視為重要事件,從這些重要事件的發生,我們能夠對每個時間的官員,使用EventRank的演算法做排名計算。最後能從時間的變化中,觀察出每個時期的佔有重要影響力的官員。
To fragmented and complex structure data, social network analysis (SNA) can give an overall observation, but also view the relationship between individuals. Recent research in SNA is the degradation of the network link to a simple relationship but it will lose a lot of valuable information. The size and type of network with different research topics will follow the increase or rapidly changing, dynamic network analysis can provide our view of changes in the network or community to form or disappear in every period, even know the impact of the interaction between nodes. This thesis is based on the government official changes and other related data to construct manager-subordinate network of the government organization and capture the important interactions between officials in every network snapshot. An official change is the occurrence of an event and special level official changes in this study as a critical event. From these critical events, we can use the Event Rank algorithm to rank the officials. Finally, we can observe which official has more influence from the time changes.
參考文獻 [1]顏秋來.〈政務官與事務官體制運作之研究〉,第二卷第一期.《國家菁英》, 2006.頁21-28 pp.
[2]胡龍騰.〈政黨輪替前後高階行政主官流動之比較〉,第三卷第四期.《國家精英》, 2007.頁31-42 pp.
[3]林嘉誠.〈政務首長的流動分析-2000.5-2007.5〉,第三卷第四期.《國家精英》, 2007.頁1-28 pp.
[4]林岡隆.〈政府官員異動之社會網路分析〉.《國立政治大學資訊科學系碩士論文》, 2009.
[5]黃俊生.〈基於社會網路分析連結預測理論之政府官員職位與職務歷程影響硏究〉.《國立政治大學資訊科學系碩士論文》, 2010.
[6] V. Krebs. The social life of routers. The Internet Protocol Journal, 3(4):14–25, 2000.
[7] P.J. Carrington, J. Scott, and S. Wasserman. Models and methods in social network analysis. Cambridge Univ Pr, 2005. ISBN 0521809592.
[8] D. Knoke and J.H. Kuklinski. Network analysis. Sage Publications, Inc, 1982. ISBN 080391914X. ISSN 0149-192X.
[9] R.A. Hanneman and M. Riddle. Introduction to social network methods. University of California Riverside, CA, 2005. 74
[10] A. Ahmed, V. Batagelj, X. Fu, S.H. Hong, D. Merrick, and A. Mrvar. Visu¬alisation and analysis of the Internet movie database. In Visualization, 2007. APVIS’07. 2007 6th International Asia-Pacific Symposium on, pages 17–24. IEEE, 2007. ISBN 1424408091.
[11] T.Y. Berger-Wolf and J. Saia. A framework for analysis of dynamic social networks. In Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 523–528. ACM, 2006. ISBN 1595933395.
[12] K. Matthias. Towards autonomic management in system administration. 2008.
[13] K. Lerman, R. Ghosh, and J.H. Kang. Centrality metric for dynamic networks. In Proceedings of the Eighth Workshop on Mining and Learning with Graphs, pages 70–77. ACM, 2010.
[14] L. Getoor and C.P. Diehl. Link mining: a survey. ACM SIGKDD Explorations Newsletter, 7(2):3–12, 2005. ISSN 1931-0145.
[15] S. Bender-deMoll and D.A. McFarland. The art and science of dynamic net¬work visualization. Journal of Social Structure, 7(2), 2006.
[16] K.M. Carley. Dynamic network analysis. In Dynamic social network modeling and analysis: Workshop summary and papers, pages 133–145. Comittee on Human Factors, National Research Council, 2003.
[17] J. O’Madadhain, J. Hutchins, and P. Smyth. Prediction and ranking algo¬rithms for event-based network data. ACM SIGKDD Explorations Newsletter, 7(2):23–30, 2005. ISSN 1931-0145.
[18] J. O’Madadhain and P. Smyth. EventRank: A framework for ranking time-varying networks. In Proceedings of the 3rd international workshop on Link discovery, pages 9–16. ACM, 2005. ISBN 1595932151.
[19] S. Yuan, Q. Bai, M. Zhang, and K.T. Win. Discovery of core-nodes in event-based social networks. In Fuzzy Systems and Knowledge Discovery, 2009. FSKD’09. Sixth International Conference on, volume 2, pages 430–434. IEEE, 2009.
[20] S. Asur, S. Parthasarathy, and D. Ucar. An event-based framework for charac-terizing the evolutionary behavior of interaction graphs. ACM Transactions on Knowledge Discovery from Data (TKDD), 3(4):1–36, 2009. ISSN 1556-4681.
[21] M. Takaffoli, F. Sangi, J. Fagnan, and O.R. Za ”ıane. A Framework for Analyzing Dynamic Social Networks. In 7th Confer¬ence on Applications of Social Network Analysis (ASNA)., 2010.
[22] L. Licamele and L. Getoor. Social capital in friendship-event networks. In Data Mining, 2006. ICDM’06. Sixth International Conference on, pages 959–964. IEEE, 2007. ISSN 1550-4786.
[23] J.M. Kleinberg. Hubs, authorities, and communities. ACM Computing Surveys(CSUR), 31(4es):5–es, 1999. 76
[24] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation rank¬ing: Bringing order to the web. 1999.
描述 碩士
國立政治大學
資訊科學學系
98753026
99
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0098753026
資料類型 thesis
dc.contributor.advisor 劉吉軒zh_TW
dc.contributor.advisor Liu, Jyi Shaneen_US
dc.contributor.author (作者) 鄭遠祥zh_TW
dc.contributor.author (作者) Cheng, Yuan Hsiangen_US
dc.creator (作者) 鄭遠祥zh_TW
dc.creator (作者) Cheng, Yuan Hsiangen_US
dc.date (日期) 2010en_US
dc.date.accessioned 5-十月-2011 14:43:53 (UTC+8)-
dc.date.available 5-十月-2011 14:43:53 (UTC+8)-
dc.date.issued (上傳時間) 5-十月-2011 14:43:53 (UTC+8)-
dc.identifier (其他 識別碼) G0098753026en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/51321-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 資訊科學學系zh_TW
dc.description (描述) 98753026zh_TW
dc.description (描述) 99zh_TW
dc.description.abstract (摘要) 對於零碎且結構複雜的資料來源時,社會網路分析能夠給予整體性的觀察,還能檢視個體之間的關係。目前社會網路分析研究中,因為將網路退化至簡單連結關係,所以會遺失許多珍貴的資訊。而網路規模和型態隨著研究議題的不同,也會跟著增大或趨於多變,但動態網路分析能夠提供我們檢視每個時期,網路的變化或社群的形成或消失,甚至能知道節點間的互動影響。本論文研究,以政府人事異動資料為主,並且加入了其他政府組織的相關資料,建構出政府組織的從屬網路,並在每個網路快照中,擷取出重要的官員異動;每一筆人事異動都是一個事件的發生,而特任或簡任官員在本研究中視為重要事件,從這些重要事件的發生,我們能夠對每個時間的官員,使用EventRank的演算法做排名計算。最後能從時間的變化中,觀察出每個時期的佔有重要影響力的官員。zh_TW
dc.description.abstract (摘要) To fragmented and complex structure data, social network analysis (SNA) can give an overall observation, but also view the relationship between individuals. Recent research in SNA is the degradation of the network link to a simple relationship but it will lose a lot of valuable information. The size and type of network with different research topics will follow the increase or rapidly changing, dynamic network analysis can provide our view of changes in the network or community to form or disappear in every period, even know the impact of the interaction between nodes. This thesis is based on the government official changes and other related data to construct manager-subordinate network of the government organization and capture the important interactions between officials in every network snapshot. An official change is the occurrence of an event and special level official changes in this study as a critical event. From these critical events, we can use the Event Rank algorithm to rank the officials. Finally, we can observe which official has more influence from the time changes.en_US
dc.description.tableofcontents 第一章緒論 ...................................... 1
 1.1研究背景 ................................... 1
 1.2研究資料 ................................... 2
  1.2.1總統府公報 .............................. 2
  1.2.2政府官員異動資料庫 ....................... 3
  1.2.3其他資料 ............................... 4
 1.3研究動機與目的 .............................. 5
 1.4研究貢獻 ................................... 5
 1.5論文架構 ................................... 6
第二章文獻探討 ................................... 8
 2.1社會網路分析 ................................ 8
  2.1.1基本定義 ............................... 8
  2.1.2網路模型 ............................... 9
  2.1.3分析指標 .............................. 10
  2.1.4小結 ................................. 12
 2.2動態網路分析 .............................. 13
  2.2.1基本概念與定義 ......................... 13
  2.2.2相關研究 .............................. 13
 2.3排名演算法 ................................ 17
  2.3.1 HITS ............................... 17
  2.3.2 PageRank ............................ 18
  2.3.3 EventRank ........................... 18
第三章動態網路模型建構與分析........................ 21
 3.1動態網路模型 ............................... 21
  3.1.1資料前處理 ............................. 21
  3.1.2靜態網路快照 ........................... 28
  3.1.3動態網路模型 ............................ 31
 3.2研究方法分析 ............................... 34
  3.2.1定義 .................................. 35
  3.2.2 EventRank ........................... 35
 3.3系統架構 .................................. 36
  3.3.1系統概述 .............................. 37
  3.3.2動態網路節點模組 ........................ 38
  3.3.3 EventRank演算法模組 ................... 41
  3.3.4排名模組 ............................... 42
第四章實驗設計與分析 ............................. 44
 4.1實驗資料 .................................. 44
 4.2實驗設計 .................................. 45
 4.3實驗結果與討論 ............................. 46
  4.3.1升遷範圍影響實驗數據 ..................... 46
  4.3.2個人政治權力變化的觀察 ................... 49
 4.4從新聞媒體觀察政府官員影響力 .................. 62
 4.5實驗總結 .................................. 67
第五章結論與未來研究方向........................... 70
5.1研究結論 .................................... 70
5.2未來研究方向 ................................. 72
參考文獻 ....................................... 73
附錄 .......................................... 78
附錄 A各單位職位人數列表 .......................... 78
附錄 B職位階層關係列表 ........................... 80
附錄 C官員人事歷任資料 ........................... 83
zh_TW
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0098753026en_US
dc.subject (關鍵詞) 動態網路分析zh_TW
dc.subject (關鍵詞) 社會網路分析zh_TW
dc.subject (關鍵詞) 政府官員異動zh_TW
dc.subject (關鍵詞) 政治權力關係zh_TW
dc.subject (關鍵詞) 資料探勘zh_TW
dc.subject (關鍵詞) 資料分析zh_TW
dc.subject (關鍵詞) Dynamic Network Analysisen_US
dc.subject (關鍵詞) Social Network Analysisen_US
dc.subject (關鍵詞) Government official’s changingen_US
dc.subject (關鍵詞) Political power relationsen_US
dc.subject (關鍵詞) Data Miningen_US
dc.subject (關鍵詞) Data Analysisen_US
dc.title (題名) 動態社會網路之趨勢指標發展與應用之研究─以政府官員異動為例zh_TW
dc.title (題名) Development and application of trend metrics in dynamic social networks─a case study in government officials changesen_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) [1]顏秋來.〈政務官與事務官體制運作之研究〉,第二卷第一期.《國家菁英》, 2006.頁21-28 pp.zh_TW
dc.relation.reference (參考文獻) [2]胡龍騰.〈政黨輪替前後高階行政主官流動之比較〉,第三卷第四期.《國家精英》, 2007.頁31-42 pp.zh_TW
dc.relation.reference (參考文獻) [3]林嘉誠.〈政務首長的流動分析-2000.5-2007.5〉,第三卷第四期.《國家精英》, 2007.頁1-28 pp.zh_TW
dc.relation.reference (參考文獻) [4]林岡隆.〈政府官員異動之社會網路分析〉.《國立政治大學資訊科學系碩士論文》, 2009.zh_TW
dc.relation.reference (參考文獻) [5]黃俊生.〈基於社會網路分析連結預測理論之政府官員職位與職務歷程影響硏究〉.《國立政治大學資訊科學系碩士論文》, 2010.zh_TW
dc.relation.reference (參考文獻) [6] V. Krebs. The social life of routers. The Internet Protocol Journal, 3(4):14–25, 2000.zh_TW
dc.relation.reference (參考文獻) [7] P.J. Carrington, J. Scott, and S. Wasserman. Models and methods in social network analysis. Cambridge Univ Pr, 2005. ISBN 0521809592.zh_TW
dc.relation.reference (參考文獻) [8] D. Knoke and J.H. Kuklinski. Network analysis. Sage Publications, Inc, 1982. ISBN 080391914X. ISSN 0149-192X.zh_TW
dc.relation.reference (參考文獻) [9] R.A. Hanneman and M. Riddle. Introduction to social network methods. University of California Riverside, CA, 2005. 74zh_TW
dc.relation.reference (參考文獻) [10] A. Ahmed, V. Batagelj, X. Fu, S.H. Hong, D. Merrick, and A. Mrvar. Visu¬alisation and analysis of the Internet movie database. In Visualization, 2007. APVIS’07. 2007 6th International Asia-Pacific Symposium on, pages 17–24. IEEE, 2007. ISBN 1424408091.zh_TW
dc.relation.reference (參考文獻) [11] T.Y. Berger-Wolf and J. Saia. A framework for analysis of dynamic social networks. In Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 523–528. ACM, 2006. ISBN 1595933395.zh_TW
dc.relation.reference (參考文獻) [12] K. Matthias. Towards autonomic management in system administration. 2008.zh_TW
dc.relation.reference (參考文獻) [13] K. Lerman, R. Ghosh, and J.H. Kang. Centrality metric for dynamic networks. In Proceedings of the Eighth Workshop on Mining and Learning with Graphs, pages 70–77. ACM, 2010.zh_TW
dc.relation.reference (參考文獻) [14] L. Getoor and C.P. Diehl. Link mining: a survey. ACM SIGKDD Explorations Newsletter, 7(2):3–12, 2005. ISSN 1931-0145.zh_TW
dc.relation.reference (參考文獻) [15] S. Bender-deMoll and D.A. McFarland. The art and science of dynamic net¬work visualization. Journal of Social Structure, 7(2), 2006.zh_TW
dc.relation.reference (參考文獻) [16] K.M. Carley. Dynamic network analysis. In Dynamic social network modeling and analysis: Workshop summary and papers, pages 133–145. Comittee on Human Factors, National Research Council, 2003.zh_TW
dc.relation.reference (參考文獻) [17] J. O’Madadhain, J. Hutchins, and P. Smyth. Prediction and ranking algo¬rithms for event-based network data. ACM SIGKDD Explorations Newsletter, 7(2):23–30, 2005. ISSN 1931-0145.zh_TW
dc.relation.reference (參考文獻) [18] J. O’Madadhain and P. Smyth. EventRank: A framework for ranking time-varying networks. In Proceedings of the 3rd international workshop on Link discovery, pages 9–16. ACM, 2005. ISBN 1595932151.zh_TW
dc.relation.reference (參考文獻) [19] S. Yuan, Q. Bai, M. Zhang, and K.T. Win. Discovery of core-nodes in event-based social networks. In Fuzzy Systems and Knowledge Discovery, 2009. FSKD’09. Sixth International Conference on, volume 2, pages 430–434. IEEE, 2009.zh_TW
dc.relation.reference (參考文獻) [20] S. Asur, S. Parthasarathy, and D. Ucar. An event-based framework for charac-terizing the evolutionary behavior of interaction graphs. ACM Transactions on Knowledge Discovery from Data (TKDD), 3(4):1–36, 2009. ISSN 1556-4681.zh_TW
dc.relation.reference (參考文獻) [21] M. Takaffoli, F. Sangi, J. Fagnan, and O.R. Za ”ıane. A Framework for Analyzing Dynamic Social Networks. In 7th Confer¬ence on Applications of Social Network Analysis (ASNA)., 2010.zh_TW
dc.relation.reference (參考文獻) [22] L. Licamele and L. Getoor. Social capital in friendship-event networks. In Data Mining, 2006. ICDM’06. Sixth International Conference on, pages 959–964. IEEE, 2007. ISSN 1550-4786.zh_TW
dc.relation.reference (參考文獻) [23] J.M. Kleinberg. Hubs, authorities, and communities. ACM Computing Surveys(CSUR), 31(4es):5–es, 1999. 76zh_TW
dc.relation.reference (參考文獻) [24] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation rank¬ing: Bringing order to the web. 1999.zh_TW