學術產出-國科會研究計畫

文章檢視/開啟

書目匯出

Google ScholarTM

政大圖書館

引文資訊

TAIR相關學術產出

題名 熱帶幾何相交理論與熱帶循環之研究(II)
其他題名 On Tropical Intersection Theory and Tropical Cycles (II)
作者 蔡炎龍
貢獻者 國立政治大學應用數學學系
行政院國家科學委員會
關鍵詞 數學
日期 2009
上傳時間 24-十月-2012 16:13:52 (UTC+8)
摘要 本計畫承接去年計畫, 研究熱帶幾何相交理論。我們正進行的計畫, 是研究熱帶相交之相關理論, 及熱帶代數簇之計算方式。在這個計畫中, 我們會以熱帶幾何的角度, 去研究萊夫謝茨束及流形退化的問題。主要的關鍵是要使用熱帶幾何去研究非交換餘調。我們準備發展一個叫「非交換餘調熱帶化」的技巧, 並希望能應用這新的技術, 研究單值作用。為達到我們的目標, 我們需要深入理解熱帶相交理論, 並且能計算熱帶簇。我們會用進行中計畫得到的成果, 在這個計畫中實際應用出來。
The project is a continuation of our previous project. Our on-going project is to learn basic theory of the tropical intersection theory, as well as the computing techniques of tropical varieties. In this project, we will apply what we learn to study Lefschetz pencils and manifold degenerations in tropical settings. A key point is to apply tropical geometry to study non-abelian cohomology. We would like to develop a new technique, which we call ""tropicalization of non-abelian chomology,`` to study monodromy actions. To achieve our goal, we need to comprehend tropical intersection theory and tropical cycles, as well as the ability to compute tropical algebraic variety. We would like to apply what we learn from our on-going project to this new project.
關聯 基礎研究
學術補助
研究期間:9808~ 9907
研究經費:306仟元
資料類型 report
dc.contributor 國立政治大學應用數學學系en_US
dc.contributor 行政院國家科學委員會en_US
dc.creator (作者) 蔡炎龍zh_TW
dc.date (日期) 2009en_US
dc.date.accessioned 24-十月-2012 16:13:52 (UTC+8)-
dc.date.available 24-十月-2012 16:13:52 (UTC+8)-
dc.date.issued (上傳時間) 24-十月-2012 16:13:52 (UTC+8)-
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/54047-
dc.description.abstract (摘要) 本計畫承接去年計畫, 研究熱帶幾何相交理論。我們正進行的計畫, 是研究熱帶相交之相關理論, 及熱帶代數簇之計算方式。在這個計畫中, 我們會以熱帶幾何的角度, 去研究萊夫謝茨束及流形退化的問題。主要的關鍵是要使用熱帶幾何去研究非交換餘調。我們準備發展一個叫「非交換餘調熱帶化」的技巧, 並希望能應用這新的技術, 研究單值作用。為達到我們的目標, 我們需要深入理解熱帶相交理論, 並且能計算熱帶簇。我們會用進行中計畫得到的成果, 在這個計畫中實際應用出來。en_US
dc.description.abstract (摘要) The project is a continuation of our previous project. Our on-going project is to learn basic theory of the tropical intersection theory, as well as the computing techniques of tropical varieties. In this project, we will apply what we learn to study Lefschetz pencils and manifold degenerations in tropical settings. A key point is to apply tropical geometry to study non-abelian cohomology. We would like to develop a new technique, which we call ""tropicalization of non-abelian chomology,`` to study monodromy actions. To achieve our goal, we need to comprehend tropical intersection theory and tropical cycles, as well as the ability to compute tropical algebraic variety. We would like to apply what we learn from our on-going project to this new project.en_US
dc.language.iso en_US-
dc.relation (關聯) 基礎研究en_US
dc.relation (關聯) 學術補助en_US
dc.relation (關聯) 研究期間:9808~ 9907en_US
dc.relation (關聯) 研究經費:306仟元en_US
dc.subject (關鍵詞) 數學en_US
dc.title (題名) 熱帶幾何相交理論與熱帶循環之研究(II)zh_TW
dc.title.alternative (其他題名) On Tropical Intersection Theory and Tropical Cycles (II)en_US
dc.type (資料類型) reporten