學術產出-學位論文
文章檢視/開啟
書目匯出
-
題名 加權模糊時間數列分析與預測效率評估
Analysis and Efficiency Evaluation with Forecasting for Weighted Fuzzy Time Series作者 吳佩容
Wu, Pei Jung貢獻者 吳柏林
Wu, Berlin
吳佩容
Wu, Pei Jung關鍵詞 模糊時間數列分析
預測
整合測度
效率評估日期 2011 上傳時間 30-十月-2012 11:27:58 (UTC+8) 摘要 近年來,預測技術的創新與改進愈來愈受到重視。對於預測效率評估的要求也愈來愈高。尤其在經濟建設、人口政策、經營規畫、管理控制等問題上,預測更是決策過程中不可或缺的重要資訊。目前有關模糊時間數列分析與預測效率評估並不多見。主要是模糊殘差值的測量相當困難。有鑑於此,本文提出以模糊距離來進行效率評估。並且從不同的角度來探討預測的準確度。實證研究顯示,藉由中心點與區間長度的整合測度,可以得到一個合理的評估結果。這對於財務金融的模糊數據分析與未來市場的走勢將深具意義。 參考文獻 [1] 吳柏林 2005模糊統計導論與應用。五南書局。[2] 吳柏林,林玉鈞 2002模糊時間數列分析與預測—以台灣地區加權股價指數為例。應用數學學報,第25卷,第一期,頁67-76。[3] 吳柏林 1995 時間數列分析導論。華泰書局。[4] 林茂文 1992 時間序列分析與預測。華泰書局。[5] 林原宏 2006 模糊統計。五南書局。[6] 楊奕農 2009 時間序列分析-經濟與財務上之應用。雙葉書廊。[7] Chang, S. K. (2007). “On the Testing Hypotheses of Mean and Variance for Interval Data,”Management Science & Statistical Decision, Vol. 4, No. 2, pp. 63-69.[8] Chatfield, C. (1993). “Calculating Interval Forecasts,”Journal and Business & Economic Statics, Vol. 11, No. 2, pp. 121-135.[9] Chen, S. M. (1996). “Forecasting Enrollments Based on Fuzzy Time Series,”Fuzzy Sets and Systems, Vol. 81, No. 3, pp. 311-319.[10] Chen, S. M. (2002). “Forecasting Enrollments Based on High Order Fuzzy Time Series,”Cybernetics and Systems: An International Journal, Vol. 133, No. 1, pp. 1-16.[11] Chen, S. M. and Hsu, C. C. (2004). “A New Method to Forecast Enrollment Using Fuzzy Time Series,”International Journal of Applied Science and Engineering, Vol. 3, No. 2, pp. 234-244.[12] Cheng, C. H., Chen, T. L., and Chiang C. H. (2006). “Trend-Weighted Fuzzy Time Series Model for TAIEX Forecasting,”Proceeding of the 13th International Conference on Neural Information Processing, Part-Ⅲ, Lecture Notes in Computer Science, Hong Kong, Vol. 4234, pp. 469-477.[13] Huarng, K. (2001). “Effective Lengths of Intervals to Improve Forecasting in Fuzzy Time Series,”Fuzzy Sets and Systems, Vol. 123, No. 3, pp.387-394.[14] Hsu, H. L. (2008). “Interval Time Series Analysis with Forecasting Efficiency Evaluation,” Doctorial Thesis, Department of Mathematical Science, National Chengchi University, Taipei, Taiwan.[15] Hsu, Y.Y., Tse, S.M. and Wu, B. (2003). “A New Approach of Bivariate Fuzzy Time Series Analysis to the Forecasting of a Stock Index,” International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, Vol. 11, No. 6, pp. 671-690.[16] Kreinovich, V., Nguyen H. T., and Wu, B. (2006). “On-Line Algorithms for Computing Mean and Variance of Interval Data, and their Use in Intelligent Systems,”Information Science, Vol. 177, pp. 3228-3238.[17] Pathak, H. K. and Singh, P. (2011). ”A New Bandwidth Interval Based Forecasting Method for Enrollments Using Fuzzy Time Series,”Scientific Research, Vol. 2, pp. 504-507.[18] Song, Q. and Chissom, B. S. (1993). “Forecasting Enrollment with Fuzzy Time Series-Part Ⅰ,”Fuzzy Sets and Systems, Vol. 54, No. 1, pp. 1-9.[19] Tseng, F.-M. and Tzeng, G.-H. (2002). “A Fuzzy Seasonal ARIMA Model for Forecasting,” Fuzzy Sets and Systems, Vol. 126, No. 3, pp. 367-376.[20] Wu, B. and Hung, S. (2006). “A Fuzzy Identification Procedure for Nonlinear Time Series with Example on ARCH and Bilinear Models,”Fuzzy Sets and Systems, Vol. 108, pp. 275-287.[21] Zadeh, L. A. (1965). “Fuzzy Sets,” Information Control, Vol. 8, No. 3, pp. 338-353. 描述 碩士
國立政治大學
應用數學研究所
99751003
100資料來源 http://thesis.lib.nccu.edu.tw/record/#G0099751003 資料類型 thesis dc.contributor.advisor 吳柏林 zh_TW dc.contributor.advisor Wu, Berlin en_US dc.contributor.author (作者) 吳佩容 zh_TW dc.contributor.author (作者) Wu, Pei Jung en_US dc.creator (作者) 吳佩容 zh_TW dc.creator (作者) Wu, Pei Jung en_US dc.date (日期) 2011 en_US dc.date.accessioned 30-十月-2012 11:27:58 (UTC+8) - dc.date.available 30-十月-2012 11:27:58 (UTC+8) - dc.date.issued (上傳時間) 30-十月-2012 11:27:58 (UTC+8) - dc.identifier (其他 識別碼) G0099751003 en_US dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/54646 - dc.description (描述) 碩士 zh_TW dc.description (描述) 國立政治大學 zh_TW dc.description (描述) 應用數學研究所 zh_TW dc.description (描述) 99751003 zh_TW dc.description (描述) 100 zh_TW dc.description.abstract (摘要) 近年來,預測技術的創新與改進愈來愈受到重視。對於預測效率評估的要求也愈來愈高。尤其在經濟建設、人口政策、經營規畫、管理控制等問題上,預測更是決策過程中不可或缺的重要資訊。目前有關模糊時間數列分析與預測效率評估並不多見。主要是模糊殘差值的測量相當困難。有鑑於此,本文提出以模糊距離來進行效率評估。並且從不同的角度來探討預測的準確度。實證研究顯示,藉由中心點與區間長度的整合測度,可以得到一個合理的評估結果。這對於財務金融的模糊數據分析與未來市場的走勢將深具意義。 zh_TW dc.description.tableofcontents 1. 前言.................................. 32. 區間模糊數與預測效率分析.............. 52.1 模糊時間數列..................... 52.2 常見的區間時間數列預測模式....... 62.3 預測效率評估..................... 93. 研究方法.............................. 123.1 加權時間數列法................... 123.2 加權模糊時間數列法............... 164. 實證分析.............................. 174.1 資料來源......................... 174.2 加權模糊時間數列法............... 174.3 左右端點k階區間移動平均法........ 224.4 比較「加權模糊時間數列法」及「左右端點k階區間移動平均法」 的測量誤差:................. 275. 結論.................................. 28參考目錄................................. 29 zh_TW dc.language.iso en_US - dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0099751003 en_US dc.subject (關鍵詞) 模糊時間數列分析 zh_TW dc.subject (關鍵詞) 預測 zh_TW dc.subject (關鍵詞) 整合測度 zh_TW dc.subject (關鍵詞) 效率評估 zh_TW dc.title (題名) 加權模糊時間數列分析與預測效率評估 zh_TW dc.title (題名) Analysis and Efficiency Evaluation with Forecasting for Weighted Fuzzy Time Series en_US dc.type (資料類型) thesis en dc.relation.reference (參考文獻) [1] 吳柏林 2005模糊統計導論與應用。五南書局。[2] 吳柏林,林玉鈞 2002模糊時間數列分析與預測—以台灣地區加權股價指數為例。應用數學學報,第25卷,第一期,頁67-76。[3] 吳柏林 1995 時間數列分析導論。華泰書局。[4] 林茂文 1992 時間序列分析與預測。華泰書局。[5] 林原宏 2006 模糊統計。五南書局。[6] 楊奕農 2009 時間序列分析-經濟與財務上之應用。雙葉書廊。[7] Chang, S. K. (2007). “On the Testing Hypotheses of Mean and Variance for Interval Data,”Management Science & Statistical Decision, Vol. 4, No. 2, pp. 63-69.[8] Chatfield, C. (1993). “Calculating Interval Forecasts,”Journal and Business & Economic Statics, Vol. 11, No. 2, pp. 121-135.[9] Chen, S. M. (1996). “Forecasting Enrollments Based on Fuzzy Time Series,”Fuzzy Sets and Systems, Vol. 81, No. 3, pp. 311-319.[10] Chen, S. M. (2002). “Forecasting Enrollments Based on High Order Fuzzy Time Series,”Cybernetics and Systems: An International Journal, Vol. 133, No. 1, pp. 1-16.[11] Chen, S. M. and Hsu, C. C. (2004). “A New Method to Forecast Enrollment Using Fuzzy Time Series,”International Journal of Applied Science and Engineering, Vol. 3, No. 2, pp. 234-244.[12] Cheng, C. H., Chen, T. L., and Chiang C. H. (2006). “Trend-Weighted Fuzzy Time Series Model for TAIEX Forecasting,”Proceeding of the 13th International Conference on Neural Information Processing, Part-Ⅲ, Lecture Notes in Computer Science, Hong Kong, Vol. 4234, pp. 469-477.[13] Huarng, K. (2001). “Effective Lengths of Intervals to Improve Forecasting in Fuzzy Time Series,”Fuzzy Sets and Systems, Vol. 123, No. 3, pp.387-394.[14] Hsu, H. L. (2008). “Interval Time Series Analysis with Forecasting Efficiency Evaluation,” Doctorial Thesis, Department of Mathematical Science, National Chengchi University, Taipei, Taiwan.[15] Hsu, Y.Y., Tse, S.M. and Wu, B. (2003). “A New Approach of Bivariate Fuzzy Time Series Analysis to the Forecasting of a Stock Index,” International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, Vol. 11, No. 6, pp. 671-690.[16] Kreinovich, V., Nguyen H. T., and Wu, B. (2006). “On-Line Algorithms for Computing Mean and Variance of Interval Data, and their Use in Intelligent Systems,”Information Science, Vol. 177, pp. 3228-3238.[17] Pathak, H. K. and Singh, P. (2011). ”A New Bandwidth Interval Based Forecasting Method for Enrollments Using Fuzzy Time Series,”Scientific Research, Vol. 2, pp. 504-507.[18] Song, Q. and Chissom, B. S. (1993). “Forecasting Enrollment with Fuzzy Time Series-Part Ⅰ,”Fuzzy Sets and Systems, Vol. 54, No. 1, pp. 1-9.[19] Tseng, F.-M. and Tzeng, G.-H. (2002). “A Fuzzy Seasonal ARIMA Model for Forecasting,” Fuzzy Sets and Systems, Vol. 126, No. 3, pp. 367-376.[20] Wu, B. and Hung, S. (2006). “A Fuzzy Identification Procedure for Nonlinear Time Series with Example on ARCH and Bilinear Models,”Fuzzy Sets and Systems, Vol. 108, pp. 275-287.[21] Zadeh, L. A. (1965). “Fuzzy Sets,” Information Control, Vol. 8, No. 3, pp. 338-353. zh_TW