學術產出-學位論文
文章檢視/開啟
書目匯出
-
題名 影像內容檢索中以社群網絡演算法為基礎之多張影像搜尋
Query by Multiple Images for Content-Based Image Retrieval Based on Social Network Algorithms作者 張瑋鈴
Chang, Wei Ling貢獻者 沈錳坤
Shan, Man Kwan
張瑋鈴
Chang, Wei Ling關鍵詞 影像內容檢索
多張影像查詢
社群網絡
Content-Based Image Retrieval
Multiple Images Search
Social Network日期 2011 上傳時間 30-十月-2012 11:28:22 (UTC+8) 摘要 近年來,隨著數位科技快速的發展,影像資料量迅速的增加,因此影像檢索成為重要的多媒體技術之一。在傳統的影像內容檢索技術中,使用影像低階特徵值,例如顏色(Color)、紋理(Texture)、形狀(Shape)等來描述影像的內容並進行圖片相似度的比對。然而,傳統的影像內容檢索僅提供單張影像查詢,很少研究多張影像的查詢。因此,本研究提出一個可針對多張影像查詢的方法以提供多張影像查詢的影像內容檢索。本研究將影像內容檢索結合社群網絡演算法,使用MPEG-7中相關特徵描述子和SIFT做為主要特徵向量,擷取影像的低階影像特徵,透過特徵相似度計算建立影像之間的網絡,並利用社群網絡演算法找出與多張查詢影像相似的影像。實驗結果顯示所提出的方法可精確的擷取到相似的影像。
In recent years, with the faster and faster development of computer technology, the number of digital images is grown rapidly so that the Content-Based Image Retrieval has become one of important multimedia technologies. Much research has been done on Content-Based Image Retrieval. However, little research has been done on query by multiple images. This thesis investigates the mechanism for query by multiple images. First, MPEG-7 image features and SIFT are extracted from images. Then, we calculate the similarity of images to construct the proximity graph which represents the similarity structure between images. Last, processing of query by multiple images is achieved based on the social network algorithms. Experimental results indicate the proposed method provides high accuracy and precision.參考文獻 [1] M. Bober, “MPEG-7 Visual Shape Descriptors,” IEEE Transactions on Circuits and System for Video Technology, Vol. 11, No. 6, pp. 716-719, 2001. [2] C. Carson, S. Belongie, H. Greenspan, and J. Malik, “Blobworld: Image Segmentation using Expectation-Maximization and Its Application to Image Querying,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 24, No. 8, pp. 1026–1038, 2002.[3] S. F. Chang, T. Sikora, and A. Puri, “Overview of MPEG-7 Standard,” IEEE Transactions on Circuits Systems for Video Technology, Vol. 11, No. 6, 2001.[4] M. Flickner, H. Sawhney, J. Ashley, Q. Huang, B. Dom, M. Gorkani, J. Hafner, D.Lee, D. Petkovic, D. Steele, and P. Yanker, “Query By Image and Video Content : The QBIC System,” IEEE Computer Magazine, Vol. 28, No. 9, pp. 23–32, 1995.[5] A. Gupta, “Visual Information Retrieval: A Virage Perspective,” Virage, Inc. , San Mateo, Calif., 1995. [6] J. Han, and K. K. Ma, “Fuzzy Color Histogram and Its Use in Color Image Retrieval,” IEEE Transactions on Image Processing, Vol. 11, No. 8, pp. 944-952, 2002.[7] R. Hess, “An Open-Source SIFT Library,” In Proc. of the ACM International Conference on Multimedia, pp.25–29, 2010.[8] T. S. Huang, S. Mehrotra, and K. Ramachandran, “Multimedia Analysis and Retrieval System (MARS) Project,” In Proc. of 33rd Annual Clinic on Library Application of Data Processing-Digital Image Access and Retrieval, 1996.[9] E. Kasutani, A. Yamada, “The MPEG-7 Color Layout Descriptor: a Compact Image Feature Description for High-speed Image/Video Segment Retrieval,” In Proc. of International Conference on Image Processing, pp. 674-677, 2001.[10] H. K. Kim, J. D. Kim, D. G. Sim, and D. I. Oh, “A Modified Zernike Moment Shape Descriptor Invariant to Translation, Rotation and Scale for Similarity-Based Image Retrieval,” In Proc. of the IEEE International Conference on Multimedia and Expo, pp. 307-310, 2000. [11] J. J. Koenderink, “The Structure of Images,” Biological Cybernetics, Vol. 50, No.5, pp. 363-396, 1984.[12] H. J. Lin, Y. T. Kao, S. H. Yen, and C. J. Wang, “A Study of Shape-Based Image Retrieval,” In Proc. of 24th International Conference on Distributed Computing Systems Workshops, pp. 118-123, 2004.[13] T. Lindeberg, “Scale-space Theory: A Basic Tool for Analyzing Structures at Different Scales,” Journal of Applied Statistics, Vol. 21, No. 2, pp. 224-270, 1994.[14] D. Lowe, “Distinctive Image Features from Scale-invariant Keypoints,” International Journal of Computer Vision, Vol. 60, No. 2, pp. 91-110, 2004.[15] B. S Manjunath, G. M. Haley, and D. F. Dunn, “Efficient Gabor Filter Design for Texture Segmentation,” Pattern Recognition, Vol. 29, No. 12, pp. 2005-2016, 1996. [16] B. S. Manjunath, J.-R. Ohm, V. V. Vasudevan, and A. Yamada, “MPEG-7 Color and Texture Descriptors,” IEEE Transactions on Circuit and System for Video Technoloy, Vol. 11, No. 6, pp. 703-715, 2001.[17] B. S. Manjunath, P. Salembier, and T. Sikora,” Introduction to MPEG-7: Multimedia Content Description Standard,” New York: Wiley, 2001.[18] J. M. Martinez, “Standards-MPEG-7 Overview of MPEG-7 Description tools, Part 2,” IEEE Multimedia, Vol. 9, No. 3, pp. 83-93, 2002.[19] W. Niblack, R. Barber, W. Equitz, et al , “The QBIC Project: Querying Images by Content using Color, Texture, and Shape,” In Proc. of SPIE Electronic Imaging: Science and Technology, 1993.[20] J. S Payne, T. J. Stonbam, “Can Texture and Image Content Retrieval Methods Match Human Perception,” In Proc. of Intelligent Multimedia, Video and Speech Processing, pp.154-157, 2001. [21] A. Pentland, R.W. Picard, and S. Sclaroff, “Photobook : Tools for Content-Based Manipulation of image databases, ” International Journal of Computer Vision , Vol.18, pp. 233-254, 1996.[22] K. Porkaew , S. Mehrotra, and M. Ortega, “Query Reformulation for Content Based Multimedia Similarity Retrieval in Mars,” In Proc. of IEEE Conference on Multimedia Computing and Systems,pp.747-751, 1999.[23] Y. Rui, T. Huang, and S. Mehrotra, “Content-Based Image Retrieval with Relevance Feedback in MARS,” In Proc. of IEEE International Conference on Image Processing , pp. 815-818, 1997.[24] T. Sikora, “The MPEG-7 Visual Standard for Content Description-An Overview, “ IEEE Transactions on Circuits Systems for Video Technology, Vol. 11, No. 6, 2001.[25] J. R. Smith and S. F. Chang, “Visualseek: A Fully Automated Content-Based Image Query System,” In Proc. of the ACM International Multimedia Conference, pp.87-98, 1996.[26] J. R. Smith, Integrated Spatial and Feature Image Systems: Retrieval, Compression and Analysis, PhD Thesis, Graduate School of Arts and Sciences, Columbia University, 1997. [27] M. Sozio and A. Gionis, “The Community-Search Problem and How To Plan A Successful Cocktail Party,” In Proc. of 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’10, pp.939-948, 2010.[28] P. Y. Yin , S. H. Li, “Content-Based Image Retrieval Using Association rule Mining with Soft Relevance Feedback” Journal of Visual Communication and Image Representation, Vol.17, No. 5, pp.1108-1125, 2006. [29] Y. Zhang, M.A. Nascimento, and O.R. Zaiane, “Building Image Mosaics: An Application of Content-Based Image Retrieval,” In Proc. of IEEE International Conference on Multimedia and Exposition, 2003. [30] “MPEG-7 Visual Experimentation Model (XM) Version 10,” ISO/IEC/JTC1/SC29/WG11, Doc. N4063, 2001. [31] “Overview of the MPEG-7 Standard Version 5.0,” Final Committee Draft, ISO/IECJTC1/SC29/WG11, Doc. N4031, 2001. 描述 碩士
國立政治大學
資訊科學學系
98971005
100資料來源 http://thesis.lib.nccu.edu.tw/record/#G0989710051 資料類型 thesis dc.contributor.advisor 沈錳坤 zh_TW dc.contributor.advisor Shan, Man Kwan en_US dc.contributor.author (作者) 張瑋鈴 zh_TW dc.contributor.author (作者) Chang, Wei Ling en_US dc.creator (作者) 張瑋鈴 zh_TW dc.creator (作者) Chang, Wei Ling en_US dc.date (日期) 2011 en_US dc.date.accessioned 30-十月-2012 11:28:22 (UTC+8) - dc.date.available 30-十月-2012 11:28:22 (UTC+8) - dc.date.issued (上傳時間) 30-十月-2012 11:28:22 (UTC+8) - dc.identifier (其他 識別碼) G0989710051 en_US dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/54653 - dc.description (描述) 碩士 zh_TW dc.description (描述) 國立政治大學 zh_TW dc.description (描述) 資訊科學學系 zh_TW dc.description (描述) 98971005 zh_TW dc.description (描述) 100 zh_TW dc.description.abstract (摘要) 近年來,隨著數位科技快速的發展,影像資料量迅速的增加,因此影像檢索成為重要的多媒體技術之一。在傳統的影像內容檢索技術中,使用影像低階特徵值,例如顏色(Color)、紋理(Texture)、形狀(Shape)等來描述影像的內容並進行圖片相似度的比對。然而,傳統的影像內容檢索僅提供單張影像查詢,很少研究多張影像的查詢。因此,本研究提出一個可針對多張影像查詢的方法以提供多張影像查詢的影像內容檢索。本研究將影像內容檢索結合社群網絡演算法,使用MPEG-7中相關特徵描述子和SIFT做為主要特徵向量,擷取影像的低階影像特徵,透過特徵相似度計算建立影像之間的網絡,並利用社群網絡演算法找出與多張查詢影像相似的影像。實驗結果顯示所提出的方法可精確的擷取到相似的影像。 zh_TW dc.description.abstract (摘要) In recent years, with the faster and faster development of computer technology, the number of digital images is grown rapidly so that the Content-Based Image Retrieval has become one of important multimedia technologies. Much research has been done on Content-Based Image Retrieval. However, little research has been done on query by multiple images. This thesis investigates the mechanism for query by multiple images. First, MPEG-7 image features and SIFT are extracted from images. Then, we calculate the similarity of images to construct the proximity graph which represents the similarity structure between images. Last, processing of query by multiple images is achieved based on the social network algorithms. Experimental results indicate the proposed method provides high accuracy and precision. en_US dc.description.tableofcontents 摘要 IABSTRACT II第一章 前言 11.1研究背景與動機 11.2 研究方法 31.3 研究貢獻 41.4論文架構 4第二章 相關研究 52.1 MPEG-7 52.2影像低階特徵值 62.3影像內容檢索(Content-Based Image Retrieval)系統簡介 82.3.1 QBIC 82.3.2 VisualSEEK 92.3.3 VIR Image Engine 92.3.4 Blobworld 102.3.5 MARS(Multimedia Analysis and Retrieval System) 10第三章 研究方法 143.1方法架構 143.2 影像特徵擷取(Image Feature Extraction) 153.2.1 Color Layout Descriptor (CLD) 163.2.2 Scalable Color Descriptor (SCD) 163.2.3 Color Structure Descriptor (CSD) 173.2.4 Dominant Color Descriptor (DCD) 183.2.5 Homogeneous Texture Descriptor (HTD) 193.2.6 Edge Histogram Descriptor (EHD) 203.2.7 Region Shape Descriptor (RSD) 213.2.8 Scale-Invariant Feature Transform (SIFT) 213.3 相似度正規化 243.4 建立Image Proximity Network 253.5 Community Search Algorithms 263.5.1 Maximizing the Minimum Degree 273.5.2 Communities with Size Restriction 28第四章 實驗 354.1實驗資料 354.2實驗設計 364.3實驗結果 384.4實驗總結 44第五章 結論與未來研究方向 455.1 結論 455.2 未來研究方向 45參考文獻 47 zh_TW dc.language.iso en_US - dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0989710051 en_US dc.subject (關鍵詞) 影像內容檢索 zh_TW dc.subject (關鍵詞) 多張影像查詢 zh_TW dc.subject (關鍵詞) 社群網絡 zh_TW dc.subject (關鍵詞) Content-Based Image Retrieval en_US dc.subject (關鍵詞) Multiple Images Search en_US dc.subject (關鍵詞) Social Network en_US dc.title (題名) 影像內容檢索中以社群網絡演算法為基礎之多張影像搜尋 zh_TW dc.title (題名) Query by Multiple Images for Content-Based Image Retrieval Based on Social Network Algorithms en_US dc.type (資料類型) thesis en dc.relation.reference (參考文獻) [1] M. Bober, “MPEG-7 Visual Shape Descriptors,” IEEE Transactions on Circuits and System for Video Technology, Vol. 11, No. 6, pp. 716-719, 2001. [2] C. Carson, S. Belongie, H. Greenspan, and J. Malik, “Blobworld: Image Segmentation using Expectation-Maximization and Its Application to Image Querying,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 24, No. 8, pp. 1026–1038, 2002.[3] S. F. Chang, T. Sikora, and A. Puri, “Overview of MPEG-7 Standard,” IEEE Transactions on Circuits Systems for Video Technology, Vol. 11, No. 6, 2001.[4] M. Flickner, H. Sawhney, J. Ashley, Q. Huang, B. Dom, M. Gorkani, J. Hafner, D.Lee, D. Petkovic, D. Steele, and P. Yanker, “Query By Image and Video Content : The QBIC System,” IEEE Computer Magazine, Vol. 28, No. 9, pp. 23–32, 1995.[5] A. Gupta, “Visual Information Retrieval: A Virage Perspective,” Virage, Inc. , San Mateo, Calif., 1995. [6] J. Han, and K. K. Ma, “Fuzzy Color Histogram and Its Use in Color Image Retrieval,” IEEE Transactions on Image Processing, Vol. 11, No. 8, pp. 944-952, 2002.[7] R. Hess, “An Open-Source SIFT Library,” In Proc. of the ACM International Conference on Multimedia, pp.25–29, 2010.[8] T. S. Huang, S. Mehrotra, and K. Ramachandran, “Multimedia Analysis and Retrieval System (MARS) Project,” In Proc. of 33rd Annual Clinic on Library Application of Data Processing-Digital Image Access and Retrieval, 1996.[9] E. Kasutani, A. Yamada, “The MPEG-7 Color Layout Descriptor: a Compact Image Feature Description for High-speed Image/Video Segment Retrieval,” In Proc. of International Conference on Image Processing, pp. 674-677, 2001.[10] H. K. Kim, J. D. Kim, D. G. Sim, and D. I. Oh, “A Modified Zernike Moment Shape Descriptor Invariant to Translation, Rotation and Scale for Similarity-Based Image Retrieval,” In Proc. of the IEEE International Conference on Multimedia and Expo, pp. 307-310, 2000. [11] J. J. Koenderink, “The Structure of Images,” Biological Cybernetics, Vol. 50, No.5, pp. 363-396, 1984.[12] H. J. Lin, Y. T. Kao, S. H. Yen, and C. J. Wang, “A Study of Shape-Based Image Retrieval,” In Proc. of 24th International Conference on Distributed Computing Systems Workshops, pp. 118-123, 2004.[13] T. Lindeberg, “Scale-space Theory: A Basic Tool for Analyzing Structures at Different Scales,” Journal of Applied Statistics, Vol. 21, No. 2, pp. 224-270, 1994.[14] D. Lowe, “Distinctive Image Features from Scale-invariant Keypoints,” International Journal of Computer Vision, Vol. 60, No. 2, pp. 91-110, 2004.[15] B. S Manjunath, G. M. Haley, and D. F. Dunn, “Efficient Gabor Filter Design for Texture Segmentation,” Pattern Recognition, Vol. 29, No. 12, pp. 2005-2016, 1996. [16] B. S. Manjunath, J.-R. Ohm, V. V. Vasudevan, and A. Yamada, “MPEG-7 Color and Texture Descriptors,” IEEE Transactions on Circuit and System for Video Technoloy, Vol. 11, No. 6, pp. 703-715, 2001.[17] B. S. Manjunath, P. Salembier, and T. Sikora,” Introduction to MPEG-7: Multimedia Content Description Standard,” New York: Wiley, 2001.[18] J. M. Martinez, “Standards-MPEG-7 Overview of MPEG-7 Description tools, Part 2,” IEEE Multimedia, Vol. 9, No. 3, pp. 83-93, 2002.[19] W. Niblack, R. Barber, W. Equitz, et al , “The QBIC Project: Querying Images by Content using Color, Texture, and Shape,” In Proc. of SPIE Electronic Imaging: Science and Technology, 1993.[20] J. S Payne, T. J. Stonbam, “Can Texture and Image Content Retrieval Methods Match Human Perception,” In Proc. of Intelligent Multimedia, Video and Speech Processing, pp.154-157, 2001. [21] A. Pentland, R.W. Picard, and S. Sclaroff, “Photobook : Tools for Content-Based Manipulation of image databases, ” International Journal of Computer Vision , Vol.18, pp. 233-254, 1996.[22] K. Porkaew , S. Mehrotra, and M. Ortega, “Query Reformulation for Content Based Multimedia Similarity Retrieval in Mars,” In Proc. of IEEE Conference on Multimedia Computing and Systems,pp.747-751, 1999.[23] Y. Rui, T. Huang, and S. Mehrotra, “Content-Based Image Retrieval with Relevance Feedback in MARS,” In Proc. of IEEE International Conference on Image Processing , pp. 815-818, 1997.[24] T. Sikora, “The MPEG-7 Visual Standard for Content Description-An Overview, “ IEEE Transactions on Circuits Systems for Video Technology, Vol. 11, No. 6, 2001.[25] J. R. Smith and S. F. Chang, “Visualseek: A Fully Automated Content-Based Image Query System,” In Proc. of the ACM International Multimedia Conference, pp.87-98, 1996.[26] J. R. Smith, Integrated Spatial and Feature Image Systems: Retrieval, Compression and Analysis, PhD Thesis, Graduate School of Arts and Sciences, Columbia University, 1997. [27] M. Sozio and A. Gionis, “The Community-Search Problem and How To Plan A Successful Cocktail Party,” In Proc. of 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’10, pp.939-948, 2010.[28] P. Y. Yin , S. H. Li, “Content-Based Image Retrieval Using Association rule Mining with Soft Relevance Feedback” Journal of Visual Communication and Image Representation, Vol.17, No. 5, pp.1108-1125, 2006. [29] Y. Zhang, M.A. Nascimento, and O.R. Zaiane, “Building Image Mosaics: An Application of Content-Based Image Retrieval,” In Proc. of IEEE International Conference on Multimedia and Exposition, 2003. [30] “MPEG-7 Visual Experimentation Model (XM) Version 10,” ISO/IEC/JTC1/SC29/WG11, Doc. N4063, 2001. [31] “Overview of the MPEG-7 Standard Version 5.0,” Final Committee Draft, ISO/IECJTC1/SC29/WG11, Doc. N4031, 2001. zh_TW