學術產出-學位論文
文章檢視/開啟
書目匯出
-
題名 與BaFe2As2鐵基超導體有關之化合物的電子結構
Electronic structures of compounds related to iron-based superconductor BaFe2As2作者 王瑞騰 貢獻者 楊志開
王瑞騰關鍵詞 第一原理 日期 2011 上傳時間 30-十月-2012 11:28:43 (UTC+8) 摘要 探討近年來研究高溫超導材料的趨勢,除了傳統的銅氧化物超導體,鐵基超導(Iron-based superconductors)材料為探討的新方向,更高臨界溫度材料也不斷被發現。而鐵基超導始終尚未有一個完美的實際理論運作機制可以解釋,而不同材料的臨界溫度Tc在特定外加壓力或參雜時均會有增加的現象,故鐵基超導的研究領域實為廣闊。除了可利用實驗分析外,本論文利用第一原理計算軟體Vasp,亦可運用計算分析電子特性。研究分析內容分成三個部分︰第一部分探討基本的鐵基超導材料FeS、FeTe、FeSe的電子性質,如態密度、能帶結構及費米面。同結構的FeS、FeTe、FeSe有共通的特性,三種材料的態密度極為相似,其中Fe的d軌域貢獻在費米能量之上約在-2eV到2eV之間,而Se、Te及S的p軌域主要貢獻在費米能量之下,三種材料的費米面也極為相似。第一部分另探討√2×√2 AFMⅡ結構的FeSe,在0至120kB的外加壓力下晶格常數的趨勢變化,發現在70kB至80kB時,會有晶格常數Z軸長度小於X、Y長度的情況。第二部分探討在BaFe_2 As_2 晶格中,以參雜不同濃度的Ru以取代Fe, ( 即Ba(Fe1-xRux)2As2 ) 的電子性質。考慮不同Ru參雜濃度X = 0.125與0.25,及不同Fe及Ru的磁性方向排列,詳盡的探討Ru削弱Fe的實際運作,考慮是否因為電荷轉移而造成Fe磁性削弱的現象,並判斷哪一種參雜結構最為為穩定。第三部分探討在BaFe_2 As_2 晶格中,考慮同時以Ru取代Fe及以P取代As的參雜情況,( 即Ba(Fe1-xRux)2(As1-yPy)2 ),藉由不同Ru參雜濃度X = 0.125、0.25及Y = 0.125、0.25。Ru取代Fe及P取代As,以第一原理計算探討電子性質,可以發現與Fe連結的P,亦有削弱磁性的現象。
In recent years, besides the traditional copper oxide superconductors, Iron-based superconductors and higher critical temperature materials have become a new trend in research of high Tc superconductors . As the traditional copper oxide superconductors are still lacking a perfect theorem to explain how they work, and the higher critical temperature materials in different outer pressures or in the situation of doping have the problem of Tc increase, the research of Iron-based superconductors is therefore considered to be more potential.Instead of experimental analysis, this thesis applies the first principle calculation software – Vasp to analyze the electron properties. The main discussions are broken down into three significant parts with conclusions as follows:Part I is the discussion on the electron properties of FeS, FeSe and FeTe, such as density of state, band structure and Fermi Surface, and the change of the lattice constant of FeSe.Part II is the discussion on the doping effect. I choose Ba(Fe1-xRux)2As2 , that is, we substitute Ru for Fe by different X. By considering different types of spin polarize and different places where Ru doped in Ba(Fe1-xRux)2As2 crystal. The doping of Ru shows a property of the suppression of the magnetic moment. Ru atoms like to remain nonmagnetic in this structure. We consider two circumstances, X = 0.125 and X = 0.25. By using the first principle calculation method, we are trying to figure out how the suppression works.Part III--- we consider Ba(Fe1-xRux)2(As1-yPy)2 . By replacing Ru and P at the same time, we find that the P substations also decrease the magnetic moment of the nearest iron atoms. We consider X = 0.125 and 0.25,Y = 0.125 and 0.25.參考文獻 [1] S. Margadonna, Y. Takabayashi, Y. Ohishi, Y. Mizuguchi, Y. Takano, T. Kagayama, T. Nakagawa, PHYSICAL REVIEW B 80, 064506 (2009).[2] E. Aktür1 and S. Ciraci1, PHYSICAL REVIEW B 79, 184523 (2009).[3] S. Sharma, A. Bharathi, S. Chandra, V. R. Reddy, S. Paulraj,A. T. Satya, V. S. Sastry, A. Gupta, and C. S. Sundar, PHYSICAL REVIEW B 81, 174512 (2010)[4] S. Jiang, H. Xing, G. Xuan, C. Wang, Z. Ren, C. Feng, J. Dai,Z. Xu, and G. Cao, J. Phys.: Condens. Matter 21, 382203(2009)[5] D. J. Singh, PHYSICAL REVIEW B 78, 094511 (2008)[6] Thaler, N. Ni, A. Kracher, J. Q. Yan, S. L. Bud’ko, and P. C.Canfield , PHYSICAL REVIEW B 82, 014534 (2010)[7] Alaska Subedi Lijun Zhang, D. J. Singh, and M. H. Du , PHYSICAL REVIEW B 78, 134514 (2008)[8] M. Pan a, H.F. Mab, J.T. Zhu a, C.H. Cheng c, Zh. Huang d, Y. Zhang a, H. Zhang a, Y. Zhao a,c, Physica C 471 603–607 (2011)[9] R. J. McQueeney, A. Kreyssig, and A. I. Goldman, PHYSICAL REVIEW B 83, 054514 (2011)[10] M. Yi, D. H. Lu, J. G. Analytis, J.-H. Chu, S.-K. Mo, R.-H. He, R. G. Moore, X. J. Zhou, G. F. Chen,J. L. Luo, N. L. Wang, Z. Hussain, D. J. Singh, I. R. Fisher, and Z.-X. Shen, PHYSICAL REVIEW B 80, 024515 (2009)[11] W. Schnelle, A. Leithe-Jasper, R. Gumeniuk, U. Burkhardt, D. Kasinathan, and H. Rosner , PHYSICAL REVIEW B 79, 214516 (2009)[12] Erwin Wiesenmayer, Hubertus Luetkens, Gwendolyne Pascua, Rustem Khasanov, Alex Amato, Heidi Potts,Benjamin Banusch, Hans-Henning Klauss, and Dirk Johrendt1, PRL 107, 237001 (2011)[13] J. Fink, S. Thirupathaiah, R. Ovsyannikov, H. A. Dürr, R. Follath, Y. Huang, S. de Jong, M. S. Golden,Yu-Zhong Zhang, H. O. Jeschke, R. Valentí, C. Felser, S. Dastjani Farahani, M. Rotter, and D. Johrendt, PHYSICAL REVIEW B 79, 155118 (2009)[14] S. Margadonna,* Y. Takabayashi, Y. Ohishi, Y. Mizuguchi, Y. Takano, T. Kagayama, T. Nakagawa, M. Takata,and K. Prassides, PHYSICAL REVIEW B 80, 064506 (2009).[15] A. Nekrasov, Z. V. Pchelkina, M. V. Sadovskii , arXiv:0806.2630v2(2008)[16] W. Schnelle, A. Leithe-Jasper, R. Gumeniuk, U. Burkhardt, D. Kasinathan, and H. Rosner , PHYSICAL REVIEW B 79, 214516 (2009)[17] R. G. Parr, and W. Yang,“Density-Functional Theory of Atoms and Molecules”,by Oxford University Press(1989). 描述 碩士
國立政治大學
應用物理研究所
99755016
100資料來源 http://thesis.lib.nccu.edu.tw/record/#G0099755016 資料類型 thesis dc.contributor.advisor 楊志開 zh_TW dc.contributor.author (作者) 王瑞騰 zh_TW dc.creator (作者) 王瑞騰 zh_TW dc.date (日期) 2011 en_US dc.date.accessioned 30-十月-2012 11:28:43 (UTC+8) - dc.date.available 30-十月-2012 11:28:43 (UTC+8) - dc.date.issued (上傳時間) 30-十月-2012 11:28:43 (UTC+8) - dc.identifier (其他 識別碼) G0099755016 en_US dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/54655 - dc.description (描述) 碩士 zh_TW dc.description (描述) 國立政治大學 zh_TW dc.description (描述) 應用物理研究所 zh_TW dc.description (描述) 99755016 zh_TW dc.description (描述) 100 zh_TW dc.description.abstract (摘要) 探討近年來研究高溫超導材料的趨勢,除了傳統的銅氧化物超導體,鐵基超導(Iron-based superconductors)材料為探討的新方向,更高臨界溫度材料也不斷被發現。而鐵基超導始終尚未有一個完美的實際理論運作機制可以解釋,而不同材料的臨界溫度Tc在特定外加壓力或參雜時均會有增加的現象,故鐵基超導的研究領域實為廣闊。除了可利用實驗分析外,本論文利用第一原理計算軟體Vasp,亦可運用計算分析電子特性。研究分析內容分成三個部分︰第一部分探討基本的鐵基超導材料FeS、FeTe、FeSe的電子性質,如態密度、能帶結構及費米面。同結構的FeS、FeTe、FeSe有共通的特性,三種材料的態密度極為相似,其中Fe的d軌域貢獻在費米能量之上約在-2eV到2eV之間,而Se、Te及S的p軌域主要貢獻在費米能量之下,三種材料的費米面也極為相似。第一部分另探討√2×√2 AFMⅡ結構的FeSe,在0至120kB的外加壓力下晶格常數的趨勢變化,發現在70kB至80kB時,會有晶格常數Z軸長度小於X、Y長度的情況。第二部分探討在BaFe_2 As_2 晶格中,以參雜不同濃度的Ru以取代Fe, ( 即Ba(Fe1-xRux)2As2 ) 的電子性質。考慮不同Ru參雜濃度X = 0.125與0.25,及不同Fe及Ru的磁性方向排列,詳盡的探討Ru削弱Fe的實際運作,考慮是否因為電荷轉移而造成Fe磁性削弱的現象,並判斷哪一種參雜結構最為為穩定。第三部分探討在BaFe_2 As_2 晶格中,考慮同時以Ru取代Fe及以P取代As的參雜情況,( 即Ba(Fe1-xRux)2(As1-yPy)2 ),藉由不同Ru參雜濃度X = 0.125、0.25及Y = 0.125、0.25。Ru取代Fe及P取代As,以第一原理計算探討電子性質,可以發現與Fe連結的P,亦有削弱磁性的現象。 zh_TW dc.description.abstract (摘要) In recent years, besides the traditional copper oxide superconductors, Iron-based superconductors and higher critical temperature materials have become a new trend in research of high Tc superconductors . As the traditional copper oxide superconductors are still lacking a perfect theorem to explain how they work, and the higher critical temperature materials in different outer pressures or in the situation of doping have the problem of Tc increase, the research of Iron-based superconductors is therefore considered to be more potential.Instead of experimental analysis, this thesis applies the first principle calculation software – Vasp to analyze the electron properties. The main discussions are broken down into three significant parts with conclusions as follows:Part I is the discussion on the electron properties of FeS, FeSe and FeTe, such as density of state, band structure and Fermi Surface, and the change of the lattice constant of FeSe.Part II is the discussion on the doping effect. I choose Ba(Fe1-xRux)2As2 , that is, we substitute Ru for Fe by different X. By considering different types of spin polarize and different places where Ru doped in Ba(Fe1-xRux)2As2 crystal. The doping of Ru shows a property of the suppression of the magnetic moment. Ru atoms like to remain nonmagnetic in this structure. We consider two circumstances, X = 0.125 and X = 0.25. By using the first principle calculation method, we are trying to figure out how the suppression works.Part III--- we consider Ba(Fe1-xRux)2(As1-yPy)2 . By replacing Ru and P at the same time, we find that the P substations also decrease the magnetic moment of the nearest iron atoms. We consider X = 0.125 and 0.25,Y = 0.125 and 0.25. en_US dc.description.tableofcontents 謝辭 I摘要 IIAbstract III目錄 IV圖目錄 VI表目錄 IX第1章 緒論 1第2章 密度泛函理論(Density Functional Theory)簡介 3第3章 密度泛涵理論計算結果 83.1 第一部分FeS、FeSe、FeTe 分析 83.1.1 FeS、FeSe、FeTe晶體結構 83.1.2 FeS、FeSe、FeTe Density of State 93.1.3 FeS、FeSe、FeTe Band Structure 103.1.4 FeS、FeSe、FeTe Fermi Surface 113.1.5 考慮FeSe在不同外加壓力下晶格常數的變化 113.2 第二部份BaFe2As2分析 133.2.1 BaFe2As2晶體結構 133.2.2 BaFe2As2 Density of State 133.2.3 BaFe2As2 Band Structure 143.3 第二部份Ba(Fe1-xRux)2As2分析 153.3.1 √2×√2 BaFe2As2自旋極化分析 153.3.2 Ba(Fe0.875Ru0.125)2As2四種自旋極化 173.3.3 探討最低能量的Ba(Fe0.875Ru0.125)2As2自旋極化3 243.3.4 探討Ba(Fe0.875Ru0.125)2As2自旋極化3翻轉Ru對角線Fe磁性 343.3.5 擴大單位晶格分析 373.4 第二部份Ba(Fe0.75Ru0.25)2As2四種不同Ru排列分析 393.4.1 Ba(Fe0.75Ru0.25)2As2位置1 433.4.2 Ba(Fe0.75Ru0.25)2As2位置2 463.4.3 Ba(Fe0.75Ru0.25)2As2位置3. 493.4.4 Ba(Fe0.75Ru0.25)2As2位置4 513.5 第三部份BaFe2(As1-yPy)2分析 543.5.1 BaFe2(As0.875P0.125)2分析 543.6 第三部份Ba(Fe1-xRux)2(As1-yPy)2分析 583.6.1 Ba(Fe0.875Ru0.125)2(As0.875P0.125)2排列1 583.6.2 Ba(Fe0.875Ru0.125)2(As0.875P0.125)2排列2 623.6.3 Ba(Fe0.75Ru0.25)2(As0.75P0.25)2排列1 653.6.4 Ba(Fe0.75Ru0.25)2(As0.75P0.25)2排列2 68第4章 結果與討論 72第5章 參考文獻 75 zh_TW dc.language.iso en_US - dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0099755016 en_US dc.subject (關鍵詞) 第一原理 zh_TW dc.title (題名) 與BaFe2As2鐵基超導體有關之化合物的電子結構 zh_TW dc.title (題名) Electronic structures of compounds related to iron-based superconductor BaFe2As2 en_US dc.type (資料類型) thesis en dc.relation.reference (參考文獻) [1] S. Margadonna, Y. Takabayashi, Y. Ohishi, Y. Mizuguchi, Y. Takano, T. Kagayama, T. Nakagawa, PHYSICAL REVIEW B 80, 064506 (2009).[2] E. Aktür1 and S. Ciraci1, PHYSICAL REVIEW B 79, 184523 (2009).[3] S. Sharma, A. Bharathi, S. Chandra, V. R. Reddy, S. Paulraj,A. T. Satya, V. S. Sastry, A. Gupta, and C. S. Sundar, PHYSICAL REVIEW B 81, 174512 (2010)[4] S. Jiang, H. Xing, G. Xuan, C. Wang, Z. Ren, C. Feng, J. Dai,Z. Xu, and G. Cao, J. Phys.: Condens. Matter 21, 382203(2009)[5] D. J. Singh, PHYSICAL REVIEW B 78, 094511 (2008)[6] Thaler, N. Ni, A. Kracher, J. Q. Yan, S. L. Bud’ko, and P. C.Canfield , PHYSICAL REVIEW B 82, 014534 (2010)[7] Alaska Subedi Lijun Zhang, D. J. Singh, and M. H. Du , PHYSICAL REVIEW B 78, 134514 (2008)[8] M. Pan a, H.F. Mab, J.T. Zhu a, C.H. Cheng c, Zh. Huang d, Y. Zhang a, H. Zhang a, Y. Zhao a,c, Physica C 471 603–607 (2011)[9] R. J. McQueeney, A. Kreyssig, and A. I. Goldman, PHYSICAL REVIEW B 83, 054514 (2011)[10] M. Yi, D. H. Lu, J. G. Analytis, J.-H. Chu, S.-K. Mo, R.-H. He, R. G. Moore, X. J. Zhou, G. F. Chen,J. L. Luo, N. L. Wang, Z. Hussain, D. J. Singh, I. R. Fisher, and Z.-X. Shen, PHYSICAL REVIEW B 80, 024515 (2009)[11] W. Schnelle, A. Leithe-Jasper, R. Gumeniuk, U. Burkhardt, D. Kasinathan, and H. Rosner , PHYSICAL REVIEW B 79, 214516 (2009)[12] Erwin Wiesenmayer, Hubertus Luetkens, Gwendolyne Pascua, Rustem Khasanov, Alex Amato, Heidi Potts,Benjamin Banusch, Hans-Henning Klauss, and Dirk Johrendt1, PRL 107, 237001 (2011)[13] J. Fink, S. Thirupathaiah, R. Ovsyannikov, H. A. Dürr, R. Follath, Y. Huang, S. de Jong, M. S. Golden,Yu-Zhong Zhang, H. O. Jeschke, R. Valentí, C. Felser, S. Dastjani Farahani, M. Rotter, and D. Johrendt, PHYSICAL REVIEW B 79, 155118 (2009)[14] S. Margadonna,* Y. Takabayashi, Y. Ohishi, Y. Mizuguchi, Y. Takano, T. Kagayama, T. Nakagawa, M. Takata,and K. Prassides, PHYSICAL REVIEW B 80, 064506 (2009).[15] A. Nekrasov, Z. V. Pchelkina, M. V. Sadovskii , arXiv:0806.2630v2(2008)[16] W. Schnelle, A. Leithe-Jasper, R. Gumeniuk, U. Burkhardt, D. Kasinathan, and H. Rosner , PHYSICAL REVIEW B 79, 214516 (2009)[17] R. G. Parr, and W. Yang,“Density-Functional Theory of Atoms and Molecules”,by Oxford University Press(1989). zh_TW