學術產出-學位論文

文章檢視/開啟

書目匯出

Google ScholarTM

政大圖書館

引文資訊

TAIR相關學術產出

題名 Hes-1 的類小泛素化修飾可調節 Hes-1 蛋白質的穩定及 GluR1 的表現
Sumoylation of Hes-1 regulates the protein stability of Hes-1 and GluR1 expression
作者 許芳芸
Hsu, Fang Yun
貢獻者 李小媛<br>趙知章
Lee, Hsiao Yuen<br>Chao, Chih Chang
許芳芸
Hsu, Fang Yun
關鍵詞 穩定度
類小泛素化修飾
stability
sumoylation
日期 2011
上傳時間 30-十月-2012 11:46:17 (UTC+8)
摘要 轉譯後修飾作用
(post-translational modifications) 包含甲基化
(methylation)、磷酸化
(phosphorylation)、泛素化
(ubiquitination)、類小泛素
化修飾
(sumoylation) 等。過去有研究指出類小泛素化修飾可以調節目標蛋白
質的穩定度,進而調節許多細胞內反應,例如:細胞核運輸作用、
DNA 複
製、調節轉錄作用、染色體分離、訊息傳遞、細胞週期調控、DNA 修補作用等
現象。類小泛素化修飾是藉由一系列的酵素,使類小泛素這個蛋白質能夠修飾
目標蛋白質的
lysine
殘基。
類小泛素化修飾是一個可逆性動態修飾過程,類
小泛素化修飾連結途徑包含有三個主要的步驟:
活化 (activation),結合
(conjugation),連接 (ligation),它們分別是藉由
E1、E2 和
E3 這三種不同的
酵素催化的。本篇研究主要是藉由類小泛素
E3 連接酶 PIAS1 進行修飾作用,
我們發現
Hairy and Enhancer of split 1 (Hes-1) 蛋白質可被類小泛素修飾。若
將類小泛素
E3 連接酶 PIAS1 突變,就無法讓野生型
Hes-1 進行類小泛素修
飾化,證實
PIAS1 的參與對於類小泛素化修飾扮演重要的角色。除此之外,
將類小泛素目標蛋白質
Hes-1 序列上第八個位置的
lysine 突變,會抑制
Hes-1 進行類小泛素化修飾。因此,透過
PIAS1 所進行的類小泛素化修飾可以
使目標蛋白質
Hes-1 蛋白質更為穩定。之後更進一步探討在空間學習與記憶
中,Hes-1 進行類小泛素化修飾與
GluR1 蛋白質表現的關係。實驗結果顯示,
Hes-1 進行類小泛素化修飾使空間學習與記憶變差並使
GluR1 蛋白質表現下
降。
There are several post-translational modifications including methylation、
phosphorylation、ubiquitination、sumoylation, etc. Previously studies
indicated that sumoylation can regulate target protein stability. Sumoylation
also modulates many cellular processes, including nuclear transport, DNA
replication, transcription, chromosome segregation, signal transduction, cell
cycle and DNA repair. Sumoylation is a process mediated by SUMOs which
are attached to specific lysine residues of target proteins by the action of a
series of enzymes. Sumoylation is a dynamically reversible process.
Sumoylation consists of three steps:activation, conjugation and ligation,
which are respectively mediated by E1, E2 and E3 ligase. This study focuses
on SUMO modification by E3 ligase. Here, we identified a new target protein,
Hairy and Enhancer of split 1 (Hes-1), for SUMO conjugation. The E3 ligase
deficient mutant of PIAS1 that leads to failure of Hes-1 protein sumoylation.
We demonstrared that PIAS1 is involved in SUMO modification of Hes-1. In
addition mutantion of Hes-1 protein on lysine 8 residue that inhibits the
sumoylation of Hes-1. Therefore, sumoylation of Hes-1 regulates the protein
stability of Hes-1. Further study of the relationship between sumoylation of
Hes-1 and GluR1 in spatial memory formation indicated that spatial memory
is impaired and GluR1 protein expression is decreased upon sumoylation of
Hes-1.
參考文獻 Abdallah B, Hassan A, Benoist C, Goula D, Behr JP, Demeneix BA (1996) A powerful nonviral
vector for in vivo gene transfer into the adult mammalian brain: polyethylenim
ine. Hum Gene Ther 7:1947-1954.
Amaral DG, Witter MP (1989) The three-dimensional organization of the hippocampal formation:
a review of anatomical data. Neuroscience 31:571-591.
Amunts, K., Kedo, O., Kindler, M., Pieperhoff, P., Mohlberg, H., Shah, N.J., Habel, U., Schneider,
F., and Zilles, K. (2005) Cytoarchitectonic mapping of the human amygdala,
hippocampal region and entorhinal cortex: intersubject variability and probability
maps. Anatomy and embryology 210(5-6): 343-352.
Andrews Emily A., Palecek Jan, Sergeant John, Taylor Elaine, Alan R. Lehmann, Watts
Felicity Z.(2005) Nse2, a Component of the Smc5-6 Complex, Is a SUMO Ligase
Required for the Response to DNA Damage. Mol Cell Bio. 25:185-196.
Atkins CM, Selcher JC, Petraitis JJ, Trzaskos JM, Sweatt JD (1998) The MAPK cascade
is required for mammalian associative learning. Nat Neurosci 1:602-609.
Akazawa C, Sasai Y, Nakanishi S, Kageyama R. (1992) Molecular characterization of
aolrt negative regulator with a basic helix-loop-helix structure predominantly
expressed in the developing nervous system.J Biol Chem.267:21879–21885.
Artavanis-Tsakonas S, Rand MD, lake RJ.(1999) Notch signaling : cell fate control and
signal integration in development. Science.284:770–776.
Arora T, Liu B, He H, Kim J, Murphy TL, Murphy KM, Modlin RL, Shuai K (2003) PIASx
is a transcriptional co-repressor of signal transducer and activator of
transcription 4. J Biol Chem 278:21327-21330.
Ayaydin, F. and Dasso, M.(2004)Distinct in vivo dynamics of vertebrate SUMO paralogues.
Mol. Biol. Cell 15, 5208-5218.
Bae S, Bessho Y, Hojo M, Kageyama R.(2000)The bHLH gene Hes6, an inhibitor of Hes1,
promotes neuronal differentiation.Development.127:2933–2943.
Bailey, D. and P. O` Hare. (2004) Characterization of the localization and proteolytic
activity of the SUMO-specific protease, SENP1. J.Biol.Chem. 279:692-703.
Bartesaghi R., and L. Ravasi. (1999) Pyramidal neuron types in field CA2 of the guinea
pig. Brain Res Bull. 50: 263-273.
Bayer P. , Arndt A., Metzger S., Mahajan R., Melchior F. (1998) Structure determination
of the small ubiquitin-related modifier SUMO-1. J. Mol. Biol. 280: 275–286.
Bear M. F., B. W. Connors, and M. A. Paradiso.(2001)Neurotransmitters. In Neurosc ience,
edited by M. F. Bear. Baltimore, MD: Williams & Wilkins, 2001c.
Bies, J., J. Markus, and L. Wolff. (2002) Covalent attachment of the SUMO-1 protein
to the negative regulatory domain of the c-Myb transcription factor modifies its
stability and transactivation capacity. J.Biol.Chem. 277:8999-9009.
Burwell RD, Witter MP, Amaral DG (1995) Perirhinal and postrhinal cortices of the rat: a
review of the neuroanatomical literature and comparison with findings from the
monkey brain. Hippocampus 5:390-408.
Cai Q, Robertson ES. (2010) Ubiquitin/SUMO modification regulates VHL protein stability
and nucleocytoplasmic localization. PLoS One. 9;5(9)
Cau E, Gradwohl G, Casarosa S, Kageyama R,Guillemot F. (2000). Hes genes regulate
sequential stages of neurogenesis in the olfactory epithelium. Development.
127:2323–2332.
Castella P, Sawai S, Nakao K, Wagner JA,Caudy M. (2000). HES–1 repression of
differentiation and proliferation in PC12 cells : role for the helix 3–helix 4
domain in transcription repression. Mol Cell Biol.20:6170–6183.
Chung CD, Liao J, Liu B, Rao X, Jay P, Berta P, Shuai K (1997) Specific inhibition of Stat3
signal transduction by PIAS3. Science 278:1803-1805.
Chen H, Thiagalingam A, Chopra H, Borges MW, Feder JN, Nelkin BD, Baylin SB, Ball
DW. (1997) Conservation of the lateral inhibition pathway in human lung
Drosophila cancer : A hairy-related protein (HES–1) directly represses achaetescute
homolog–1 expression. Proc Natl Acad Sci USA 94:5355–5360.
Copeland NG, Gilbert DJ, Schindler C, Zhong Z, Wen Z, Darnell JE, Jr., Mui AL,
Miyajima A, Quelle FW, Ihle JN, et al. (1995) Distribution of the mammalian
Stat gene family in mouse chromosomes. Genomics 29:225-228.
Cotman CW, Monaghan DT, Ganong AH. (1988) Excitatory amino acid neurotransmission:
NMDA receptors and Hebb-type synaptic plasticity. Annu Rev Neurosci.
1988;11:61-80.
Davies SN, Collingridge GL (1989) Role of Excitatory Amino-Acid Receptors in Synaptic
Transmission in Area Ca1 of Rat Hippocampus. Proceedings of the Royal
Society of London Series B-Biological Sciences 236:373-384.
Dawson SR, Turner DL, Weintraub H, Parkhurst SM. (1995) Specificity for the hairy/
enhancer of split basic helix-loop-helix (bHLH) proteins maps outside the
bHLH domain and suggests two separable modes of transcriptional repression.
Mol Cell Biol.15:6923–6931.
Desterro, J. M., M. S. Rodriguez , and R. T. Hay. (1998) SUMO-1 modification of
IkappaBalpha inhibits NF-kappaB activation. Mol.Cell 2:233-239.
Duval D, Duval G, Kedinger C, Poch O, Boeuf H (2003) The `PINIT` motif, of a newly
identified conserved domain of the PIAS protein family, is essential for nuclear
retention of PIAS3L. FEBS Lett 554:111-118.
Eichenbaum H, Stewart C, Morris RG(1990) Hippocampal representation in place learning.
J Neurosci 10:3531-3542.
Fagg, G. E., Foster, A. C. (1983) Amino acid neurotransmitters and their pathways in the
mammalian central nervous system. Neuroscience 9: 701-19.
Fisher AL, Ohsako S, Caudy M. (1996) The WRPW motif of the Hairy-related basic
helix-loop-helix repressor proteins acts as a 4–amino-acid transcription
repression and protein-protein interaction domain.Mol Cell Biol.16:2670–2677.
Fonnum F. (1984) Glutamate : a neurotransmitter in mammalian brain. J Neurochem.
42(1):1-11.
Foster TC, Castro CA, Mcnaughton BL (1989) Spatial Selectivity of Rat Hippocampal-
Neurons-Dependence on Preparedness for Movement. Science 244:1580-1582.
Frey U, Huang YY, Kandel ER (1993) Effects of cAMP simulate a late stage of LTP in
hippocampal CA1 neurons. Science 260:1661-1664.
Gaiano, N., Nye, J. S. and Fishell, G.(2000). Radial glial identity is promoted by Notch1
signaling in the murine forebrain. Neuron 26, 395-404.
Gill, G.(2003) Post-translational modification by the small ubiquitin-related modifier SUMO
has big effects on transcription factor activity. Curr. Opin. Genet. Dev.
13, 108-113.
Gill, G.(2004) SUMO and ubiquitin in the nucleus: different functions, similar mechanisms?
Genes Dev. 18:2046-2059.
Giri R, Yeh HH, Wu CH, Liu HS. (2008) SUMO-1 Overexpression Increases RbAp46
Protein Stability and Suppresses Cell Growth. ANTICANCER RESEARCH
28: 3749-3756.
Goelet P, Castellucci VF, Schacher S, Kandel ER (1986) The long and the short of
long-term memory--a molecular framework. Nature 322: 419- 422.
Goodson, M.L., Hong, Y., Rogers, R., Matunis, M.J., Park-Sarge, O.-K. and Sarge, K.D.
(2001) SUMO-1 modification regulates the DNA binding activity of heat shock
transcription factor 2, a promyelocytic leukemia nulear body associated
transcription factor. J. Biol. Chem. 276, 18513-18518.
Gross M, Liu B, Tan J, French FS, Carey M, Shuai K. (2001) Distinct effects of PIAS
proteins on androgen-mediated gene activation in prostate cancer cells.
Oncogene 20:3880-3887.
Gross M, Yang R, Top I, Gasper C, Shuai K (2004) PIASy-mediated repression of the
androgen receptor is independent of sumoylation. Oncogene 23:3059-3066.
Hatakeyama J, Bessho Y, Katoh K, Ookawara S, Fujioka M, Guillemot F, Kageyama R.
(2004) Hes genes regulate size, shape and histogenesis of the nervous
system by control of the timing of neural stem cell differentiation.
Development.131:5539–5550.
Hay, R. T. (2005) SUMO: a history of modification. Mol.Cell 18:1-12.
Hollmann M., and S. Heinemann. (1994) Cloned glutamate receptors. Annu Rev Neurosci.
17: 31-108.
Hoege, C., B. Pfander, G. L. Moldovan, G. Pyrowolakis, and S. Jentsch.(2002) RAD6-
dependent DNA repair is linked to modification of PCNA by ubiquitin and
SUMO. Nature 419:135-41.
Hershko, A. and A. Ciechanover.(1998) The ubiquitin system. Annu.Rev.Biochem.
67:425-479.
Hojo M, Ohtsuka T, Hashimoto N, Gradwohl G, Guillemot F, Kageyama R. (2000)
Glial cell fate specification modulated by the bHLH gene Hes5 in mouse
retina. Development 127:2515–2522.
Hong Y, Rogers R, Matunis MJ, Mayhew CN, Goodson ML, Park-Sarge OK, Sarge KD.
(2001) Regulation of heat shock transcription factor 1 by stress-induced SUMO-1
modification.J Biol Chem. 276(43):40263-7.
Honjo, T. (1996). The shortest path from the surface to the nucleus : RBP-J kappa
/Su(H) transcription factor. Genes Cells 1, 1-9.
Ishibashi M, Ang S-L, Shiota K, Nakanishi S, Kageyama R, Guillemot F. (1995)
Targeted disruption of mammalian hairy and Enhancer of split homolog-1 (HES-1)
leads to up-regulation of neural helix-loop-helix factors, premature
neurogenesis, and severe neural tube defects. Genes Dev9:3136–3148.
Iso T, Sartorelli V, Poizat C, Iezzi S, Wu H,Chung G, Kedes L, amamori Y. (2001)
HERP, a novel heterodimer partner of HES/E(spl) in Notch signaling. Mol Cell Biol
21:6080–6089.
Issac PS, Ziff EB (1998) Genetic elements regulating HES-1 induction in Wnt-1
transformed PC12 cells. Cell Growth Differ 9:827–836.
Jackson PK (2001) A new RING for SUMO : wrestling transcriptional responses into
nuclear bodies with PIAS family E3 SUMO ligases. Genes Dev
15:3053-3058.
Jakobs A, Koehnke J, Himstedt F, Funk M, Korn B, Gaestel M, Niedenthal R (2007)
Ubc9 fusion-directed SUMOylation (UFDS) : a method to analyze function of
protein SUMOylation. Nat Methods 4:245-250.
Jian Ren, Xinjiao Gao, Changjiang Jin, Mei Zhu, Xiwei Wang, Andrew Shaw, Longping
Wen, Xuebiao Yao and Yu Xue. (2009) Systematic study of protein
sumoylation : Development of a site-specific predictor of SUMOsp 2.0. Proteomics.
9:3409-3412.
Johnson ES, Gupta AA (2001) An E3-like factor that promotes SUMO conjugation to the
yeast septins. Cell 106:735-744.
Johnson ES (2004) Protein modification by SUMO. Annu Rev Biochem 73:355-382.
Johnston D., and D. G. Amaral.(1998) Hippocampus in “The synaptic organization of the
brain” (GM Shepherd, Ed) chapter 11.
Kageyama R, Ohtsuka T (1999) The Notch-Hes pathway in mammalian neural
development. Cell Res 9: 179-188.
Kageyama R, Ohtsuka T, Hatakeyama J, Ohsaw a R (2005) Rols of bHLH genes in
neural stem cell differentiation. Exp Cell Res 306: 343-348.
Kageyama R, Ohtsuka T, Kobayashi T (2008) Roles of Hes genes in neural
development. Dev Growth Differ 50 Suppl 1: S97-103.
Kahyo, T., T. Nishida, and H. Yasuda. (2001) Involvement f PIAS1 in the sumoylation
of tumor suppressor p53. Mol.Cell 8:713-718.
Kandel ER, Schwartz JH, Jesseell TM. (1991) Principles of neural science. 3rd ed.
Elseiver Science Publishing Co. New York pp153-160.
Kesner RP, Hardy JD (1983) Long-term memory for contextual attributes : dissociation
of amygdala and hippocampus. Behav Brain Res 8:139-149.
Kerscher, O., R. Felberbaum, and M. Hochstrasser. (2006) Modification of proteins by
ubiquitin and ubiquitin-like proteins. Annu.Rev.Cell Dev.Biol. 22:159-180.
Klapp E, Chen SJ, Sweatt JD (1993) Mechanism of protein kinase C activation during
the induction and maintenance of long-term potentiation probed using a selective
peptide substrate. Proceedings of the National Academy of Sciences of the
United States of America 90: 8337-8341.
Kotaja, N., U. Karvonen, O. A. Janne, and J. J. Palvimo. (2002) PIAS proteins modulate
transcription factors by functioning as SUMO-1 ligases. Mol. Cell Biol.
22:5222-5234.
Kullmann DM, Asztely F.(1998) Extrasynaptic glutamate spillover in the hippocampus:
evidence and implications. Trends Neurosci. 21(1):8-14.
Kurepa J, Walker JM, Smalle J, Gosink MM, Davis SJ, Durham TL, Sung DY, Vierstra RD.
(2003) The small ubiquitin-like modifier (SUMO) protein modification system
in Arabidopsis. Accumulation of SUMO1 and -2 conjugates is increased by stress.
J Biol Chem. 28;278(9):6862-72.
Larkman AU, Jack JJ (1995) Synaptic plasticity : hippocampal LTP. Current Opinion in
Neurobiology 5:324-334.
Lee Ching T., Ma Yun L. and Lee Eminy H. Y. (2007) SGK enhances fear memory
formation through down –regulation of the expression of Hes5. J Neurochem.
100(6):1531-42.
Lin Xia , Liang Min, Liang Yao-Yun , Brunicardi F. Charles, Feng Xin-Hua. (2003)
SUMO-1/Ubc9 Promotes Nuclear Accumulation and Metabolic Stability of
Tumor Suppressor Smad4.J. Biol. Chem., 278:31043-31048.
Lin Cheng H,Lee Eminy H. Y. (2012) JNK1 Inhibits GluR1 Expression and GluR1-Mediated
Calcium Influx through Phosphorylation and Stabilization of Hes-1. The
Journal of Neuroscience.32(5):1826 –1846.
Li SJ, Hochstrasser M. (2003) The Ulp1 SUMO isopeptidase : distinct domains
required for viability, nuclear envelope localization, and substrate specificity.
J Cell Biol. 160:1069-81.
Liu B, Liao J, Rao X, Kushner SA, Chung CD, Chang DD, Shuai K (1998) Inhibition
of Stat1-mediated gene activation by PIAS1. Proc Natl Acad Sci USA
95:10626-10631.
Liu B, Yang Y, Chernishof V, Loo RR, Jang H, Tahk S, Yang R, Mink S, Shultz D, Bellone
CJ, Loo JA, Shuai K (2007) Proinflammatory stimuli induce IKKalphamediated
phosphorylation of PIAS1 to restrict inflammation and immunity.
Cell 129:903-914.
Liu B, Shuai K. (2008) Targeting the PIAS1 SUMO ligase pathway to control inflammation.
Trends Pharmacol Sci. 29(10):505-9.
Lungwitz U, Breunig M, Blunk T, Gopferich A (2005)Polyethylenimine-based non-viral gene
delivery systems. Eur J Pharm Biopharm 60:247-266.
Maclean, P. D. (1952) Some psychiatric implications of physiological studies on
frontotemporal portion of limbic ystem (visceral brain). Electroencephalography
and clinical neurophysiology 4(4): 407-418.
Mahajan R., Gerace L., Melchior F. (1998) Molecular characterization of the SUMO-1
modification of RanGAP1 and its role in nuclear envelope association. J. Cell Biol.
140: 259–270.
Mack V, Burnashev N, Kaiser KM, Rozov A, Jensen V et al. (2001) Conditional restoration
of hippocampal synaptic potentiation in Glur-A-deficient mice. Science
292: 2501-2504.
Malinow R, Schulman H, Tsien RW (1989) Inhibition of postsynaptic PKC or CaMKII blocks
induction but not expression of LTP. Science 245:862-866.
Martres MP, Demeneix B, Hanoun N, Hamon M, Giros B (1998) Up- and down-expression
of the dopamine transporter by plasmid DNA transfer in the rat brain.
Eur J Neurosci 10:3607-3616.
McDonald WH, Pavlova Y, Yates JR , Boddy MN. (2003) Novel essential DNA repair
proteins Nse1 and Nse2 are subunits of the fission yeast Smc5-Smc6 complex.
J Biol Chem 278:45460-45467.
McGaugh JL, Cahill L, Roozendaal B (1996) Involvement of the amygdala in memory
storage : interaction with other brain systems. Proc Natl Acad Sci USA
93:13508-13514.
McNaughton BL, Barnes CA, Meltzer J, Sutherland RJ (1989) Hippocampal Granule
Cells Are Necessary for Normal Spatial-Learning but Not for Spatially-
Selective Pyramidal Cell Discharge. Exp Brain Res 76:485-496.
Melchior F. (2000) SUMO-nonclasssical ubiquitin. Annu. Rev. Cell Dev. Biol. 16: 591-626.
Meluh, P.B. and Koshlnad, D. (1995) Evidence that the MIF2 gene of s. cerevisiae
encodes a centromer protein with homology to the mammalian centromer
protein CENP-C. Mol. Biol. Cell 6 793–807.
Milner B, Squire LR, Kandel ER (1998) Cognitive neuroscience and the study of memory.
Neuron 20:445-468.
Miyoshi G, Bessho Y, Yamada S, Kageyama R. (2004) Identification of a novel basic
helix-loop-helix gene, Heslike, and its role in GABAergic neurogenesis. J
Neurosci 24:3672–3682.
Morris R (1984) Developments of a water-maze procedure for studying spatial
learning in the rat. J Neurosci Methods 11:47-60.
Morris RG, Pickering A, Abrahams S, Feigenbaum JD (1996). Space and the hippocampal
formation in humans. Brain Research Bulletin 40:487–90.
Nacerddine, K., F. Lehembre, M. Bhaumik, J. Artus, M. Cohen-Tannoudji, C. Babinet,
Pandolfi, and A. Dejean. (2005) The SUMO pathway is essential for
nuclear integrity and chromosome segregation in mice. Dev.Cell 9:769-779.
Nakashima K, Takizawa T, Ochiai W, Yanagisawa M, Hisatsune T, Nakafuku M,
Miyazono K, Kishimoto T, Kageyama R, Taga T (2001) BMP2-mediated
alteration in the developmental pathway of fetal mouse brain cells from
neurogenesis to astrocytogenesis. Proc Natl Acad Sci USA 98:5868–5873.
Nishida, T. and H. Yasuda. (2002) PIAS1 and PIASxalpha function as SUMO-E3
ligases toward androgen receptor and repress androgen receptor-dependent
transcription. J.Biol.Chem. 277:41311-41317.
Ohtsuka T, Ishibashi M, Gradwohl G, Nakanishi S, Guillemot F, Kageyama R. (1999)
Hes1 and Hes5 as Notch effectors in mammalian neuronal differentiation.
EMBO J 18:2196–2207.
Ohtsuka T, Sakamoto M, Guillemot F, Kageyama R. (2001) Roles of the basic helixloop
helix genes Hes1 and Hes5 in expansion of neural stem cells of the
developing brain. J Biol Chem 276:30467–30474.
Ohsumi Y. (1999) Molecular mechanism of autophagy in yeast, Saccharomyces
cerevisiae. Philos. Trans. R Soc. London Ser. B Biol Sci. 354:1577-1580.
O`Keefe J, Dostrovsky J (1971) The hippocampus as a spatial map. Preliminary
evidence from unit activity in the freely-moving rat. Brain Res 34:171-175.
Okuma T, Honda R, Ichikawa G, Tsumagari N, Yasuda H (1999) In vitro SUMO-1
modification requires two enzymatic steps, E1 and E2. Biochem Biophys Res
Commun 254:693-698.
Orrego F, Villanueva S. (1993) The chemical nature of the main central excitatory
transmitter : a critical appraisal based upon release studies and synaptic
vesicle localization. Neuroscience. 56(3):539-55.
Paroush Z, Finley Jr RL, Kidd T, Wainwright SM, Ingham PW, Brent R, Ish-Horowictz D.
(1994) Groucho is required for Drosophila neurogenesis, segmentation,
and sex determination and interacts directly with hairy-related bHLH proteins.
Cell 79:805–815.
Paxinos G. WC (1986) The rat brain in stereotaxic coordinates, Orlando, Academic
Press.
Rodriguez, M. S., C. Dargemont, and R. T. Hay. (2001) SUMO-1 conjugation in vivo
requires both a consensus modification motif and nuclear targeting. J. Biol. Chem.
20;276:12654-9.
Rosenmund C, Stern-Bach Y, Stevens CF. (1998) The tetrameric structure of a glutamate
receptor channel. Science. 280(5369):1596-9.
Rytinki MM, Kaikkonen S, Pehkonen P, Jääskelänen T, Palvimo JJ. (2009) PIAS
proteins : pleiotropic interactors associated with SUMO. Cell Mol Life Sci.
66:3029-41.
Potts PR, Yu H. (2005) Human MMS21/NSE2 is a SUMO ligase required for DNA
repair. Mol Cell Biol. 25:7021-32.
Sasai Y, Kageyama R, Tagawa Y, Shigemoto R, Nakanishi S (1992) Two mammalian
helix-loop-helix factors structurally related to Drosophila hairy and Enhancer
of split. Genes Dev 6: 2620-2634.
Sarazin M, Deweer B, Merkl A, Von Poser N, Pillon B, Dubois B (2002) Procedural
learning and striatofrontal dysfunction in Parkinson`s disease. Mov Disord
17:265-273.
Schwienhorst, I., E. S. Johnson, and R. J. Dohmen.(2000) SUMO conjugation and
deconjugation. Mol.Gen.Genet. 263:771-786.
Scoville WB, Milner B (1957) Loss of recent memory after bilatera hippocampal
lesions. J Neurol Neurosurg Psychiatry 20:11-21.
Seufert W, Futcher B, Jentsch S. (1995) Role of a ubiquitin-conjugating enzyme in degradation
of S- and M-phase cyclins. Nature 373:78-81.
Shuai K (2006) Regulation of cytokine signaling pathways by PIAS proteins. Cell Res
16:196-202.
Shuai K, Liu B (2005) Regulation of gene-activation pathways by PIAS proteins in the
immune system. Nat Rev Immunol 5:593-605.
Solecki DJ, Liu XL, Tomoda T, Fang Y, Hatten ME (2001) Activated Notch2 signaling
inhibits differentiation of cerebellar granule neuron precursors by maintaining
proliferation. Neuron 31:557–568
Song L, Bhattacharya S, Yunus AA, Lima CD, Schindler C (2006) Stat1 and SUMO
modification. Blood 108:3237-3244.
Squire LR, Alvarez P (1995) Retrograde amnesia and memory consolidation : a
neurobiological perspective. Curr Opin Neurobiol 5:169-177.
Taelman V, Van Wayenbergh R, Solter M, Pichon B, Pieler T, Christophe D, Bellefroid
EJ. (2004) Sequences downstream of the bHLH domain of the Xenopus
hairy-related transcription factor–1 act as an extended dimerization domain
that contributes to the selection of the partners. DevBiol 276:47–63.
Tai Derek J C, Hsu Wei L, Liu Yen C, Ma Yun L and Lee Eminy H Y. (2011) Novel
role and mechanism of protein inhibitor of activated STAT1 in spatial learning.
The EMBO Journal. 30, 205 - 220.
Tang Z, El Far O, Betz H, Scheschonka A. (2005) Pias1 interaction and sumoylation
80
of metabotropic glutamate receptor 8. J Biol Chem. 280:38153-9.
Tatham, M. H., E. Jaffray, O. A. Vaughan , J. M. Desterro, C. H. Botting, J. H.
Naismith, and R. T. Hay. (2001) Polymeric chains of SUMO-2 and SUMO-3
are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J. Biol.Chem.
276:35368-35374.
Takebayashi, K., Y Sasai, Y. Sakai, T. Watanabe, S. Nakanishi, and R. Kageyama. (1994)
Structure, chromosomal locus, and promoter analysis of the gene encoding
the mouse helix-loop-helix factor HES-1. Negative autoregulation through the
multiple N box elements. J Biol Chem. 269:5150-5156.
Tempé D, Piechaczyk M, Bossis G. (2008) SUMO under stress. Biochem Soc Trans.
36:874-8.
Teyler TJ, Discenna P (1987) Long-Term Potentiation. Annual Review of Neuroscience
10:131-161.
Tomita, K., Hattori, M., Nakamura, E., Nakanishi, S., Minato, N., Kageyama, R. (1999)
The bHLH gene Hes1 is essential for expansion of early T cell precursors.
Genes Dev. 1; 13(9): 1203–1210.
Verger, A., Perdomo, J., and Crossley, M. (2003) Modification with SUMO : A role in
transcriptional regulation. EMBO Rep. 4, 137-142.
Wang YT, Chuang JY, Shen MR, Yang WB, Chang WC, Hung JJ. (2008) Sumoylation
of Specificity Protein 1 Augments Its Degradation by Changing the Localization
and Increasing the Specificity Protein 1 Proteolytic Process. J mol biol.
25; 380(5):869-85.
Warrington EK, Weiskrantz L (1968) New method of testing long-term retention
with special reference to amnesic patients. Nature 217:972-974.
Wilkinson Kevin A. and Henley Jeremy M. (2010) Mechanisms, regulation andconsequences
of protein SUMOylation. Biochem. J. 428, 133–145.
Wisden W, Seeburg PH. (1993) Mammalian ionotropic glutamate receptors. Curr Opin
Neurobiol. 3(3):291-8.
Zamanillo D, Sprengel R, Hvalby O, Jensen V, Burnashev N et al. (1999) Importance
of AMPA receptors for hippocampal synaptic plasticity but not for spatial learning.
Science 284: 1805-1811.
Zhao, X. , Blobel, G. (2005) A SUMO ligase is part of a nuclear multiprotein complex
that affects DNA repair and chromosomal organization. Proc. Natl. Acad. Sci.
USA 102 , 4777-4782.
描述 碩士
國立政治大學
神經科學研究所
99754005
100
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0099754005
資料類型 thesis
dc.contributor.advisor 李小媛<br>趙知章zh_TW
dc.contributor.advisor Lee, Hsiao Yuen<br>Chao, Chih Changen_US
dc.contributor.author (作者) 許芳芸zh_TW
dc.contributor.author (作者) Hsu, Fang Yunen_US
dc.creator (作者) 許芳芸zh_TW
dc.creator (作者) Hsu, Fang Yunen_US
dc.date (日期) 2011en_US
dc.date.accessioned 30-十月-2012 11:46:17 (UTC+8)-
dc.date.available 30-十月-2012 11:46:17 (UTC+8)-
dc.date.issued (上傳時間) 30-十月-2012 11:46:17 (UTC+8)-
dc.identifier (其他 識別碼) G0099754005en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/54796-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 神經科學研究所zh_TW
dc.description (描述) 99754005zh_TW
dc.description (描述) 100zh_TW
dc.description.abstract (摘要) 轉譯後修飾作用
(post-translational modifications) 包含甲基化
(methylation)、磷酸化
(phosphorylation)、泛素化
(ubiquitination)、類小泛素
化修飾
(sumoylation) 等。過去有研究指出類小泛素化修飾可以調節目標蛋白
質的穩定度,進而調節許多細胞內反應,例如:細胞核運輸作用、
DNA 複
製、調節轉錄作用、染色體分離、訊息傳遞、細胞週期調控、DNA 修補作用等
現象。類小泛素化修飾是藉由一系列的酵素,使類小泛素這個蛋白質能夠修飾
目標蛋白質的
lysine
殘基。
類小泛素化修飾是一個可逆性動態修飾過程,類
小泛素化修飾連結途徑包含有三個主要的步驟:
活化 (activation),結合
(conjugation),連接 (ligation),它們分別是藉由
E1、E2 和
E3 這三種不同的
酵素催化的。本篇研究主要是藉由類小泛素
E3 連接酶 PIAS1 進行修飾作用,
我們發現
Hairy and Enhancer of split 1 (Hes-1) 蛋白質可被類小泛素修飾。若
將類小泛素
E3 連接酶 PIAS1 突變,就無法讓野生型
Hes-1 進行類小泛素修
飾化,證實
PIAS1 的參與對於類小泛素化修飾扮演重要的角色。除此之外,
將類小泛素目標蛋白質
Hes-1 序列上第八個位置的
lysine 突變,會抑制
Hes-1 進行類小泛素化修飾。因此,透過
PIAS1 所進行的類小泛素化修飾可以
使目標蛋白質
Hes-1 蛋白質更為穩定。之後更進一步探討在空間學習與記憶
中,Hes-1 進行類小泛素化修飾與
GluR1 蛋白質表現的關係。實驗結果顯示,
Hes-1 進行類小泛素化修飾使空間學習與記憶變差並使
GluR1 蛋白質表現下
降。
zh_TW
dc.description.abstract (摘要) There are several post-translational modifications including methylation、
phosphorylation、ubiquitination、sumoylation, etc. Previously studies
indicated that sumoylation can regulate target protein stability. Sumoylation
also modulates many cellular processes, including nuclear transport, DNA
replication, transcription, chromosome segregation, signal transduction, cell
cycle and DNA repair. Sumoylation is a process mediated by SUMOs which
are attached to specific lysine residues of target proteins by the action of a
series of enzymes. Sumoylation is a dynamically reversible process.
Sumoylation consists of three steps:activation, conjugation and ligation,
which are respectively mediated by E1, E2 and E3 ligase. This study focuses
on SUMO modification by E3 ligase. Here, we identified a new target protein,
Hairy and Enhancer of split 1 (Hes-1), for SUMO conjugation. The E3 ligase
deficient mutant of PIAS1 that leads to failure of Hes-1 protein sumoylation.
We demonstrared that PIAS1 is involved in SUMO modification of Hes-1. In
addition mutantion of Hes-1 protein on lysine 8 residue that inhibits the
sumoylation of Hes-1. Therefore, sumoylation of Hes-1 regulates the protein
stability of Hes-1. Further study of the relationship between sumoylation of
Hes-1 and GluR1 in spatial memory formation indicated that spatial memory
is impaired and GluR1 protein expression is decreased upon sumoylation of
Hes-1.
en_US
dc.description.tableofcontents

..................................................................................................................................................Ⅰ
中文摘要............................................................................................................................................Ⅱ
英文摘要............................................................................................................................................Ⅲ


..................................................................................................................................................Ⅳ


..................................................................................................................................................Ⅶ
英文縮寫表.......................................................................................................................................Ⅷ
第一章、緒論
...................................................................................................................................1
第一節、學習與記憶...................................................................................................................2
一、學習與記憶的定義.........................................................................................................2
二、學習與記憶的種類.........................................................................................................2
三、參與學習與記憶的腦區...............................................................................................3
第二節、空間學習記憶與海馬迴組織................................................................................4
ㄧ、海馬迴的構造與投射路徑..........................................................................................4
二、海馬迴相關的動物行為模式.....................................................................................5
第三節、Hes-1蛋白質介紹.....................................................................................................6
一、Hes-1基因結構與轉錄活性.......................................................................................6
二、Hes-1基因表現的訊號調控......................................................................................7
三、Hes-1基因在神經發育系統的表現........................................................................8
第四節、類小泛素化修飾........................................................................................................9
一、類小泛素結構與分類...................................................................................................9
二、類小泛素可逆性修飾途徑.......................................................................................10
三、類小泛素化修飾的功能............................................................................................12
第五節、類小泛素E3連接酶PIAS1蛋白質介紹..........................................................14
一、PIAS家族介紹..............................................................................................................14
二、PIAS結構介紹與類小泛素化修飾的關係.........................................................14
第六節、
本論文之研究目的及策略.................................................................................16
第二章、實驗材料與方法...........................................................................................................17
第一節、細胞培養
(Cell culture)........................................................................................18
一、細胞解凍...........................................................................................................................18
二、細胞培養...........................................................................................................................18
三、冷凍細胞...........................................................................................................................18
第二節、細胞轉染
(Transfection).......................................................................................19
一、細胞轉染...........................................................................................................................19
二、蛋白質均質液的萃取...................................................................................................19
第三節、西方墨點法
(Western blot).................................................................................19
一、蛋白質濃度測定及樣本配製....................................................................................19
二、硫酸十二酯鈉聚丙醯胺凝膠製備...........................................................................20
三、膠體電泳...........................................................................................................................21
四、蛋白質電泳轉漬法.......................................................................................................21
五、免疫染色法......................................................................................................................21
第四節、共同免疫沈澱法 (Co-immunoprecipitation, Co-IP)..................................22
第五節、構建質體
(Plasmid construction).....................................................................22
一、聚合酶連鎖反應及構建質體....................................................................................22
二、轉型...................................................................................................................................22
三、小量質體
DNA
的抽取...............................................................................................23
四、
建構定點突變之質體.................................................................................................24
五、菌液的保存......................................................................................................................24
第六節、蛋白質穩定分析 (Protein stability assay)....................................................24
第七節、實驗動物
(Experimental animals)...................................................................24
第八節、海馬迴內基因轉染作用 (transfection)............................................................25
一、立體定位手術與埋管..................................................................................................25
二、質體基因與聚乙烯亞胺混合物的製備.................................................................25
三、海馬迴
CA1 區域注射................................................................................................25
第九節、動物行為實驗:莫氏水迷津實驗
(Morris water maze).........................26
一、水迷津試驗器材............................................................................................................26
二、隱藏式平台水迷學習津試驗....................................................................................26
三、分離腦組織......................................................................................................................27
四、腦組織蛋白質萃取.......................................................................................................27
五、海馬迴組織之免疫沈澱與西方墨點法.................................................................27
第十節、藥物的製備
(Preparation of drugs).................................................................27
第十ㄧ節、統計分析 (Statistics).........................................................................................28
第三章、實驗結果
.......................................................................................................................29
第一節、 Hes-1 透過
PIAS1 進行類小泛素化修飾....................................................30
第二節、探討類小泛素化修飾
Hes-1 的
lysine 位置................................................33
第三節、類小泛素修飾化影響
Hes-1 蛋白質穩定度.................................................37
第四節、類小泛素修飾化影響內生性
Hes-1 蛋白質的穩定度
............................42
第五節、Hes-1 透過
PIAS1 進行類小泛素化修飾影響
Hes-1 蛋白質穩定度
........................................................................................................................................49
第六節、Hes-1 進行類小泛素化修飾調節空間學習記憶及海馬迴
CA1 區域
GluR1 蛋白質的表現...............................................................................................57
第四章、討論
................................................................................................................................60
第五章、結論
................................................................................................................................70
參考文獻...........................................................................................................................................72
附錄.....................................................................................................................................................82
附錄一、Hes-1基因的
conserved domains....................................................................82
附錄二、類小泛素化修飾連結途徑.......................................................................................83
附錄三、PIAS1 結構....................................................................................................................84
附錄四、Hes-1 蛋白質穩定度.................................................................................................85
zh_TW
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0099754005en_US
dc.subject (關鍵詞) 穩定度zh_TW
dc.subject (關鍵詞) 類小泛素化修飾zh_TW
dc.subject (關鍵詞) stabilityen_US
dc.subject (關鍵詞) sumoylationen_US
dc.title (題名) Hes-1 的類小泛素化修飾可調節 Hes-1 蛋白質的穩定及 GluR1 的表現zh_TW
dc.title (題名) Sumoylation of Hes-1 regulates the protein stability of Hes-1 and GluR1 expressionen_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) Abdallah B, Hassan A, Benoist C, Goula D, Behr JP, Demeneix BA (1996) A powerful nonviral
vector for in vivo gene transfer into the adult mammalian brain: polyethylenim
ine. Hum Gene Ther 7:1947-1954.
Amaral DG, Witter MP (1989) The three-dimensional organization of the hippocampal formation:
a review of anatomical data. Neuroscience 31:571-591.
Amunts, K., Kedo, O., Kindler, M., Pieperhoff, P., Mohlberg, H., Shah, N.J., Habel, U., Schneider,
F., and Zilles, K. (2005) Cytoarchitectonic mapping of the human amygdala,
hippocampal region and entorhinal cortex: intersubject variability and probability
maps. Anatomy and embryology 210(5-6): 343-352.
Andrews Emily A., Palecek Jan, Sergeant John, Taylor Elaine, Alan R. Lehmann, Watts
Felicity Z.(2005) Nse2, a Component of the Smc5-6 Complex, Is a SUMO Ligase
Required for the Response to DNA Damage. Mol Cell Bio. 25:185-196.
Atkins CM, Selcher JC, Petraitis JJ, Trzaskos JM, Sweatt JD (1998) The MAPK cascade
is required for mammalian associative learning. Nat Neurosci 1:602-609.
Akazawa C, Sasai Y, Nakanishi S, Kageyama R. (1992) Molecular characterization of
aolrt negative regulator with a basic helix-loop-helix structure predominantly
expressed in the developing nervous system.J Biol Chem.267:21879–21885.
Artavanis-Tsakonas S, Rand MD, lake RJ.(1999) Notch signaling : cell fate control and
signal integration in development. Science.284:770–776.
Arora T, Liu B, He H, Kim J, Murphy TL, Murphy KM, Modlin RL, Shuai K (2003) PIASx
is a transcriptional co-repressor of signal transducer and activator of
transcription 4. J Biol Chem 278:21327-21330.
Ayaydin, F. and Dasso, M.(2004)Distinct in vivo dynamics of vertebrate SUMO paralogues.
Mol. Biol. Cell 15, 5208-5218.
Bae S, Bessho Y, Hojo M, Kageyama R.(2000)The bHLH gene Hes6, an inhibitor of Hes1,
promotes neuronal differentiation.Development.127:2933–2943.
Bailey, D. and P. O` Hare. (2004) Characterization of the localization and proteolytic
activity of the SUMO-specific protease, SENP1. J.Biol.Chem. 279:692-703.
Bartesaghi R., and L. Ravasi. (1999) Pyramidal neuron types in field CA2 of the guinea
pig. Brain Res Bull. 50: 263-273.
Bayer P. , Arndt A., Metzger S., Mahajan R., Melchior F. (1998) Structure determination
of the small ubiquitin-related modifier SUMO-1. J. Mol. Biol. 280: 275–286.
Bear M. F., B. W. Connors, and M. A. Paradiso.(2001)Neurotransmitters. In Neurosc ience,
edited by M. F. Bear. Baltimore, MD: Williams & Wilkins, 2001c.
Bies, J., J. Markus, and L. Wolff. (2002) Covalent attachment of the SUMO-1 protein
to the negative regulatory domain of the c-Myb transcription factor modifies its
stability and transactivation capacity. J.Biol.Chem. 277:8999-9009.
Burwell RD, Witter MP, Amaral DG (1995) Perirhinal and postrhinal cortices of the rat: a
review of the neuroanatomical literature and comparison with findings from the
monkey brain. Hippocampus 5:390-408.
Cai Q, Robertson ES. (2010) Ubiquitin/SUMO modification regulates VHL protein stability
and nucleocytoplasmic localization. PLoS One. 9;5(9)
Cau E, Gradwohl G, Casarosa S, Kageyama R,Guillemot F. (2000). Hes genes regulate
sequential stages of neurogenesis in the olfactory epithelium. Development.
127:2323–2332.
Castella P, Sawai S, Nakao K, Wagner JA,Caudy M. (2000). HES–1 repression of
differentiation and proliferation in PC12 cells : role for the helix 3–helix 4
domain in transcription repression. Mol Cell Biol.20:6170–6183.
Chung CD, Liao J, Liu B, Rao X, Jay P, Berta P, Shuai K (1997) Specific inhibition of Stat3
signal transduction by PIAS3. Science 278:1803-1805.
Chen H, Thiagalingam A, Chopra H, Borges MW, Feder JN, Nelkin BD, Baylin SB, Ball
DW. (1997) Conservation of the lateral inhibition pathway in human lung
Drosophila cancer : A hairy-related protein (HES–1) directly represses achaetescute
homolog–1 expression. Proc Natl Acad Sci USA 94:5355–5360.
Copeland NG, Gilbert DJ, Schindler C, Zhong Z, Wen Z, Darnell JE, Jr., Mui AL,
Miyajima A, Quelle FW, Ihle JN, et al. (1995) Distribution of the mammalian
Stat gene family in mouse chromosomes. Genomics 29:225-228.
Cotman CW, Monaghan DT, Ganong AH. (1988) Excitatory amino acid neurotransmission:
NMDA receptors and Hebb-type synaptic plasticity. Annu Rev Neurosci.
1988;11:61-80.
Davies SN, Collingridge GL (1989) Role of Excitatory Amino-Acid Receptors in Synaptic
Transmission in Area Ca1 of Rat Hippocampus. Proceedings of the Royal
Society of London Series B-Biological Sciences 236:373-384.
Dawson SR, Turner DL, Weintraub H, Parkhurst SM. (1995) Specificity for the hairy/
enhancer of split basic helix-loop-helix (bHLH) proteins maps outside the
bHLH domain and suggests two separable modes of transcriptional repression.
Mol Cell Biol.15:6923–6931.
Desterro, J. M., M. S. Rodriguez , and R. T. Hay. (1998) SUMO-1 modification of
IkappaBalpha inhibits NF-kappaB activation. Mol.Cell 2:233-239.
Duval D, Duval G, Kedinger C, Poch O, Boeuf H (2003) The `PINIT` motif, of a newly
identified conserved domain of the PIAS protein family, is essential for nuclear
retention of PIAS3L. FEBS Lett 554:111-118.
Eichenbaum H, Stewart C, Morris RG(1990) Hippocampal representation in place learning.
J Neurosci 10:3531-3542.
Fagg, G. E., Foster, A. C. (1983) Amino acid neurotransmitters and their pathways in the
mammalian central nervous system. Neuroscience 9: 701-19.
Fisher AL, Ohsako S, Caudy M. (1996) The WRPW motif of the Hairy-related basic
helix-loop-helix repressor proteins acts as a 4–amino-acid transcription
repression and protein-protein interaction domain.Mol Cell Biol.16:2670–2677.
Fonnum F. (1984) Glutamate : a neurotransmitter in mammalian brain. J Neurochem.
42(1):1-11.
Foster TC, Castro CA, Mcnaughton BL (1989) Spatial Selectivity of Rat Hippocampal-
Neurons-Dependence on Preparedness for Movement. Science 244:1580-1582.
Frey U, Huang YY, Kandel ER (1993) Effects of cAMP simulate a late stage of LTP in
hippocampal CA1 neurons. Science 260:1661-1664.
Gaiano, N., Nye, J. S. and Fishell, G.(2000). Radial glial identity is promoted by Notch1
signaling in the murine forebrain. Neuron 26, 395-404.
Gill, G.(2003) Post-translational modification by the small ubiquitin-related modifier SUMO
has big effects on transcription factor activity. Curr. Opin. Genet. Dev.
13, 108-113.
Gill, G.(2004) SUMO and ubiquitin in the nucleus: different functions, similar mechanisms?
Genes Dev. 18:2046-2059.
Giri R, Yeh HH, Wu CH, Liu HS. (2008) SUMO-1 Overexpression Increases RbAp46
Protein Stability and Suppresses Cell Growth. ANTICANCER RESEARCH
28: 3749-3756.
Goelet P, Castellucci VF, Schacher S, Kandel ER (1986) The long and the short of
long-term memory--a molecular framework. Nature 322: 419- 422.
Goodson, M.L., Hong, Y., Rogers, R., Matunis, M.J., Park-Sarge, O.-K. and Sarge, K.D.
(2001) SUMO-1 modification regulates the DNA binding activity of heat shock
transcription factor 2, a promyelocytic leukemia nulear body associated
transcription factor. J. Biol. Chem. 276, 18513-18518.
Gross M, Liu B, Tan J, French FS, Carey M, Shuai K. (2001) Distinct effects of PIAS
proteins on androgen-mediated gene activation in prostate cancer cells.
Oncogene 20:3880-3887.
Gross M, Yang R, Top I, Gasper C, Shuai K (2004) PIASy-mediated repression of the
androgen receptor is independent of sumoylation. Oncogene 23:3059-3066.
Hatakeyama J, Bessho Y, Katoh K, Ookawara S, Fujioka M, Guillemot F, Kageyama R.
(2004) Hes genes regulate size, shape and histogenesis of the nervous
system by control of the timing of neural stem cell differentiation.
Development.131:5539–5550.
Hay, R. T. (2005) SUMO: a history of modification. Mol.Cell 18:1-12.
Hollmann M., and S. Heinemann. (1994) Cloned glutamate receptors. Annu Rev Neurosci.
17: 31-108.
Hoege, C., B. Pfander, G. L. Moldovan, G. Pyrowolakis, and S. Jentsch.(2002) RAD6-
dependent DNA repair is linked to modification of PCNA by ubiquitin and
SUMO. Nature 419:135-41.
Hershko, A. and A. Ciechanover.(1998) The ubiquitin system. Annu.Rev.Biochem.
67:425-479.
Hojo M, Ohtsuka T, Hashimoto N, Gradwohl G, Guillemot F, Kageyama R. (2000)
Glial cell fate specification modulated by the bHLH gene Hes5 in mouse
retina. Development 127:2515–2522.
Hong Y, Rogers R, Matunis MJ, Mayhew CN, Goodson ML, Park-Sarge OK, Sarge KD.
(2001) Regulation of heat shock transcription factor 1 by stress-induced SUMO-1
modification.J Biol Chem. 276(43):40263-7.
Honjo, T. (1996). The shortest path from the surface to the nucleus : RBP-J kappa
/Su(H) transcription factor. Genes Cells 1, 1-9.
Ishibashi M, Ang S-L, Shiota K, Nakanishi S, Kageyama R, Guillemot F. (1995)
Targeted disruption of mammalian hairy and Enhancer of split homolog-1 (HES-1)
leads to up-regulation of neural helix-loop-helix factors, premature
neurogenesis, and severe neural tube defects. Genes Dev9:3136–3148.
Iso T, Sartorelli V, Poizat C, Iezzi S, Wu H,Chung G, Kedes L, amamori Y. (2001)
HERP, a novel heterodimer partner of HES/E(spl) in Notch signaling. Mol Cell Biol
21:6080–6089.
Issac PS, Ziff EB (1998) Genetic elements regulating HES-1 induction in Wnt-1
transformed PC12 cells. Cell Growth Differ 9:827–836.
Jackson PK (2001) A new RING for SUMO : wrestling transcriptional responses into
nuclear bodies with PIAS family E3 SUMO ligases. Genes Dev
15:3053-3058.
Jakobs A, Koehnke J, Himstedt F, Funk M, Korn B, Gaestel M, Niedenthal R (2007)
Ubc9 fusion-directed SUMOylation (UFDS) : a method to analyze function of
protein SUMOylation. Nat Methods 4:245-250.
Jian Ren, Xinjiao Gao, Changjiang Jin, Mei Zhu, Xiwei Wang, Andrew Shaw, Longping
Wen, Xuebiao Yao and Yu Xue. (2009) Systematic study of protein
sumoylation : Development of a site-specific predictor of SUMOsp 2.0. Proteomics.
9:3409-3412.
Johnson ES, Gupta AA (2001) An E3-like factor that promotes SUMO conjugation to the
yeast septins. Cell 106:735-744.
Johnson ES (2004) Protein modification by SUMO. Annu Rev Biochem 73:355-382.
Johnston D., and D. G. Amaral.(1998) Hippocampus in “The synaptic organization of the
brain” (GM Shepherd, Ed) chapter 11.
Kageyama R, Ohtsuka T (1999) The Notch-Hes pathway in mammalian neural
development. Cell Res 9: 179-188.
Kageyama R, Ohtsuka T, Hatakeyama J, Ohsaw a R (2005) Rols of bHLH genes in
neural stem cell differentiation. Exp Cell Res 306: 343-348.
Kageyama R, Ohtsuka T, Kobayashi T (2008) Roles of Hes genes in neural
development. Dev Growth Differ 50 Suppl 1: S97-103.
Kahyo, T., T. Nishida, and H. Yasuda. (2001) Involvement f PIAS1 in the sumoylation
of tumor suppressor p53. Mol.Cell 8:713-718.
Kandel ER, Schwartz JH, Jesseell TM. (1991) Principles of neural science. 3rd ed.
Elseiver Science Publishing Co. New York pp153-160.
Kesner RP, Hardy JD (1983) Long-term memory for contextual attributes : dissociation
of amygdala and hippocampus. Behav Brain Res 8:139-149.
Kerscher, O., R. Felberbaum, and M. Hochstrasser. (2006) Modification of proteins by
ubiquitin and ubiquitin-like proteins. Annu.Rev.Cell Dev.Biol. 22:159-180.
Klapp E, Chen SJ, Sweatt JD (1993) Mechanism of protein kinase C activation during
the induction and maintenance of long-term potentiation probed using a selective
peptide substrate. Proceedings of the National Academy of Sciences of the
United States of America 90: 8337-8341.
Kotaja, N., U. Karvonen, O. A. Janne, and J. J. Palvimo. (2002) PIAS proteins modulate
transcription factors by functioning as SUMO-1 ligases. Mol. Cell Biol.
22:5222-5234.
Kullmann DM, Asztely F.(1998) Extrasynaptic glutamate spillover in the hippocampus:
evidence and implications. Trends Neurosci. 21(1):8-14.
Kurepa J, Walker JM, Smalle J, Gosink MM, Davis SJ, Durham TL, Sung DY, Vierstra RD.
(2003) The small ubiquitin-like modifier (SUMO) protein modification system
in Arabidopsis. Accumulation of SUMO1 and -2 conjugates is increased by stress.
J Biol Chem. 28;278(9):6862-72.
Larkman AU, Jack JJ (1995) Synaptic plasticity : hippocampal LTP. Current Opinion in
Neurobiology 5:324-334.
Lee Ching T., Ma Yun L. and Lee Eminy H. Y. (2007) SGK enhances fear memory
formation through down –regulation of the expression of Hes5. J Neurochem.
100(6):1531-42.
Lin Xia , Liang Min, Liang Yao-Yun , Brunicardi F. Charles, Feng Xin-Hua. (2003)
SUMO-1/Ubc9 Promotes Nuclear Accumulation and Metabolic Stability of
Tumor Suppressor Smad4.J. Biol. Chem., 278:31043-31048.
Lin Cheng H,Lee Eminy H. Y. (2012) JNK1 Inhibits GluR1 Expression and GluR1-Mediated
Calcium Influx through Phosphorylation and Stabilization of Hes-1. The
Journal of Neuroscience.32(5):1826 –1846.
Li SJ, Hochstrasser M. (2003) The Ulp1 SUMO isopeptidase : distinct domains
required for viability, nuclear envelope localization, and substrate specificity.
J Cell Biol. 160:1069-81.
Liu B, Liao J, Rao X, Kushner SA, Chung CD, Chang DD, Shuai K (1998) Inhibition
of Stat1-mediated gene activation by PIAS1. Proc Natl Acad Sci USA
95:10626-10631.
Liu B, Yang Y, Chernishof V, Loo RR, Jang H, Tahk S, Yang R, Mink S, Shultz D, Bellone
CJ, Loo JA, Shuai K (2007) Proinflammatory stimuli induce IKKalphamediated
phosphorylation of PIAS1 to restrict inflammation and immunity.
Cell 129:903-914.
Liu B, Shuai K. (2008) Targeting the PIAS1 SUMO ligase pathway to control inflammation.
Trends Pharmacol Sci. 29(10):505-9.
Lungwitz U, Breunig M, Blunk T, Gopferich A (2005)Polyethylenimine-based non-viral gene
delivery systems. Eur J Pharm Biopharm 60:247-266.
Maclean, P. D. (1952) Some psychiatric implications of physiological studies on
frontotemporal portion of limbic ystem (visceral brain). Electroencephalography
and clinical neurophysiology 4(4): 407-418.
Mahajan R., Gerace L., Melchior F. (1998) Molecular characterization of the SUMO-1
modification of RanGAP1 and its role in nuclear envelope association. J. Cell Biol.
140: 259–270.
Mack V, Burnashev N, Kaiser KM, Rozov A, Jensen V et al. (2001) Conditional restoration
of hippocampal synaptic potentiation in Glur-A-deficient mice. Science
292: 2501-2504.
Malinow R, Schulman H, Tsien RW (1989) Inhibition of postsynaptic PKC or CaMKII blocks
induction but not expression of LTP. Science 245:862-866.
Martres MP, Demeneix B, Hanoun N, Hamon M, Giros B (1998) Up- and down-expression
of the dopamine transporter by plasmid DNA transfer in the rat brain.
Eur J Neurosci 10:3607-3616.
McDonald WH, Pavlova Y, Yates JR , Boddy MN. (2003) Novel essential DNA repair
proteins Nse1 and Nse2 are subunits of the fission yeast Smc5-Smc6 complex.
J Biol Chem 278:45460-45467.
McGaugh JL, Cahill L, Roozendaal B (1996) Involvement of the amygdala in memory
storage : interaction with other brain systems. Proc Natl Acad Sci USA
93:13508-13514.
McNaughton BL, Barnes CA, Meltzer J, Sutherland RJ (1989) Hippocampal Granule
Cells Are Necessary for Normal Spatial-Learning but Not for Spatially-
Selective Pyramidal Cell Discharge. Exp Brain Res 76:485-496.
Melchior F. (2000) SUMO-nonclasssical ubiquitin. Annu. Rev. Cell Dev. Biol. 16: 591-626.
Meluh, P.B. and Koshlnad, D. (1995) Evidence that the MIF2 gene of s. cerevisiae
encodes a centromer protein with homology to the mammalian centromer
protein CENP-C. Mol. Biol. Cell 6 793–807.
Milner B, Squire LR, Kandel ER (1998) Cognitive neuroscience and the study of memory.
Neuron 20:445-468.
Miyoshi G, Bessho Y, Yamada S, Kageyama R. (2004) Identification of a novel basic
helix-loop-helix gene, Heslike, and its role in GABAergic neurogenesis. J
Neurosci 24:3672–3682.
Morris R (1984) Developments of a water-maze procedure for studying spatial
learning in the rat. J Neurosci Methods 11:47-60.
Morris RG, Pickering A, Abrahams S, Feigenbaum JD (1996). Space and the hippocampal
formation in humans. Brain Research Bulletin 40:487–90.
Nacerddine, K., F. Lehembre, M. Bhaumik, J. Artus, M. Cohen-Tannoudji, C. Babinet,
Pandolfi, and A. Dejean. (2005) The SUMO pathway is essential for
nuclear integrity and chromosome segregation in mice. Dev.Cell 9:769-779.
Nakashima K, Takizawa T, Ochiai W, Yanagisawa M, Hisatsune T, Nakafuku M,
Miyazono K, Kishimoto T, Kageyama R, Taga T (2001) BMP2-mediated
alteration in the developmental pathway of fetal mouse brain cells from
neurogenesis to astrocytogenesis. Proc Natl Acad Sci USA 98:5868–5873.
Nishida, T. and H. Yasuda. (2002) PIAS1 and PIASxalpha function as SUMO-E3
ligases toward androgen receptor and repress androgen receptor-dependent
transcription. J.Biol.Chem. 277:41311-41317.
Ohtsuka T, Ishibashi M, Gradwohl G, Nakanishi S, Guillemot F, Kageyama R. (1999)
Hes1 and Hes5 as Notch effectors in mammalian neuronal differentiation.
EMBO J 18:2196–2207.
Ohtsuka T, Sakamoto M, Guillemot F, Kageyama R. (2001) Roles of the basic helixloop
helix genes Hes1 and Hes5 in expansion of neural stem cells of the
developing brain. J Biol Chem 276:30467–30474.
Ohsumi Y. (1999) Molecular mechanism of autophagy in yeast, Saccharomyces
cerevisiae. Philos. Trans. R Soc. London Ser. B Biol Sci. 354:1577-1580.
O`Keefe J, Dostrovsky J (1971) The hippocampus as a spatial map. Preliminary
evidence from unit activity in the freely-moving rat. Brain Res 34:171-175.
Okuma T, Honda R, Ichikawa G, Tsumagari N, Yasuda H (1999) In vitro SUMO-1
modification requires two enzymatic steps, E1 and E2. Biochem Biophys Res
Commun 254:693-698.
Orrego F, Villanueva S. (1993) The chemical nature of the main central excitatory
transmitter : a critical appraisal based upon release studies and synaptic
vesicle localization. Neuroscience. 56(3):539-55.
Paroush Z, Finley Jr RL, Kidd T, Wainwright SM, Ingham PW, Brent R, Ish-Horowictz D.
(1994) Groucho is required for Drosophila neurogenesis, segmentation,
and sex determination and interacts directly with hairy-related bHLH proteins.
Cell 79:805–815.
Paxinos G. WC (1986) The rat brain in stereotaxic coordinates, Orlando, Academic
Press.
Rodriguez, M. S., C. Dargemont, and R. T. Hay. (2001) SUMO-1 conjugation in vivo
requires both a consensus modification motif and nuclear targeting. J. Biol. Chem.
20;276:12654-9.
Rosenmund C, Stern-Bach Y, Stevens CF. (1998) The tetrameric structure of a glutamate
receptor channel. Science. 280(5369):1596-9.
Rytinki MM, Kaikkonen S, Pehkonen P, Jääskelänen T, Palvimo JJ. (2009) PIAS
proteins : pleiotropic interactors associated with SUMO. Cell Mol Life Sci.
66:3029-41.
Potts PR, Yu H. (2005) Human MMS21/NSE2 is a SUMO ligase required for DNA
repair. Mol Cell Biol. 25:7021-32.
Sasai Y, Kageyama R, Tagawa Y, Shigemoto R, Nakanishi S (1992) Two mammalian
helix-loop-helix factors structurally related to Drosophila hairy and Enhancer
of split. Genes Dev 6: 2620-2634.
Sarazin M, Deweer B, Merkl A, Von Poser N, Pillon B, Dubois B (2002) Procedural
learning and striatofrontal dysfunction in Parkinson`s disease. Mov Disord
17:265-273.
Schwienhorst, I., E. S. Johnson, and R. J. Dohmen.(2000) SUMO conjugation and
deconjugation. Mol.Gen.Genet. 263:771-786.
Scoville WB, Milner B (1957) Loss of recent memory after bilatera hippocampal
lesions. J Neurol Neurosurg Psychiatry 20:11-21.
Seufert W, Futcher B, Jentsch S. (1995) Role of a ubiquitin-conjugating enzyme in degradation
of S- and M-phase cyclins. Nature 373:78-81.
Shuai K (2006) Regulation of cytokine signaling pathways by PIAS proteins. Cell Res
16:196-202.
Shuai K, Liu B (2005) Regulation of gene-activation pathways by PIAS proteins in the
immune system. Nat Rev Immunol 5:593-605.
Solecki DJ, Liu XL, Tomoda T, Fang Y, Hatten ME (2001) Activated Notch2 signaling
inhibits differentiation of cerebellar granule neuron precursors by maintaining
proliferation. Neuron 31:557–568
Song L, Bhattacharya S, Yunus AA, Lima CD, Schindler C (2006) Stat1 and SUMO
modification. Blood 108:3237-3244.
Squire LR, Alvarez P (1995) Retrograde amnesia and memory consolidation : a
neurobiological perspective. Curr Opin Neurobiol 5:169-177.
Taelman V, Van Wayenbergh R, Solter M, Pichon B, Pieler T, Christophe D, Bellefroid
EJ. (2004) Sequences downstream of the bHLH domain of the Xenopus
hairy-related transcription factor–1 act as an extended dimerization domain
that contributes to the selection of the partners. DevBiol 276:47–63.
Tai Derek J C, Hsu Wei L, Liu Yen C, Ma Yun L and Lee Eminy H Y. (2011) Novel
role and mechanism of protein inhibitor of activated STAT1 in spatial learning.
The EMBO Journal. 30, 205 - 220.
Tang Z, El Far O, Betz H, Scheschonka A. (2005) Pias1 interaction and sumoylation
80
of metabotropic glutamate receptor 8. J Biol Chem. 280:38153-9.
Tatham, M. H., E. Jaffray, O. A. Vaughan , J. M. Desterro, C. H. Botting, J. H.
Naismith, and R. T. Hay. (2001) Polymeric chains of SUMO-2 and SUMO-3
are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J. Biol.Chem.
276:35368-35374.
Takebayashi, K., Y Sasai, Y. Sakai, T. Watanabe, S. Nakanishi, and R. Kageyama. (1994)
Structure, chromosomal locus, and promoter analysis of the gene encoding
the mouse helix-loop-helix factor HES-1. Negative autoregulation through the
multiple N box elements. J Biol Chem. 269:5150-5156.
Tempé D, Piechaczyk M, Bossis G. (2008) SUMO under stress. Biochem Soc Trans.
36:874-8.
Teyler TJ, Discenna P (1987) Long-Term Potentiation. Annual Review of Neuroscience
10:131-161.
Tomita, K., Hattori, M., Nakamura, E., Nakanishi, S., Minato, N., Kageyama, R. (1999)
The bHLH gene Hes1 is essential for expansion of early T cell precursors.
Genes Dev. 1; 13(9): 1203–1210.
Verger, A., Perdomo, J., and Crossley, M. (2003) Modification with SUMO : A role in
transcriptional regulation. EMBO Rep. 4, 137-142.
Wang YT, Chuang JY, Shen MR, Yang WB, Chang WC, Hung JJ. (2008) Sumoylation
of Specificity Protein 1 Augments Its Degradation by Changing the Localization
and Increasing the Specificity Protein 1 Proteolytic Process. J mol biol.
25; 380(5):869-85.
Warrington EK, Weiskrantz L (1968) New method of testing long-term retention
with special reference to amnesic patients. Nature 217:972-974.
Wilkinson Kevin A. and Henley Jeremy M. (2010) Mechanisms, regulation andconsequences
of protein SUMOylation. Biochem. J. 428, 133–145.
Wisden W, Seeburg PH. (1993) Mammalian ionotropic glutamate receptors. Curr Opin
Neurobiol. 3(3):291-8.
Zamanillo D, Sprengel R, Hvalby O, Jensen V, Burnashev N et al. (1999) Importance
of AMPA receptors for hippocampal synaptic plasticity but not for spatial learning.
Science 284: 1805-1811.
Zhao, X. , Blobel, G. (2005) A SUMO ligase is part of a nuclear multiprotein complex
that affects DNA repair and chromosomal organization. Proc. Natl. Acad. Sci.
USA 102 , 4777-4782.
zh_TW