Publications-Theses

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 Vha16-1對果蠅腸道功能和壽命之調控
Vha16-1 regulates intestinal function and lifespan in Drosophila melanogaster
作者 宋祐陞
貢獻者 王培育
宋祐陞
關鍵詞 突變生成
壽命
肥胖
腸道酸化
mutagenesis
lifespan
obesity
gut acidification
日期 2011
上傳時間 30-Oct-2012 15:22:11 (UTC+8)
摘要 突變生成(mutagenesis)的方式有許多種,其中insertional mutagenesis為果蠅上常使用建立突變株的方式,本篇論文利用p[GawB]隨機插入果蠅genome中產生大量突變株,並篩選出會影響壽命的突變果蠅M2。進一步的實驗發現M2果蠅為Vha16-1基因的突變,並造成其mRNA表現量的下降,且在低卡路里(5% yeast、5% dextrose)與高卡路里(15% yeast、15% dextrose)的環境下homozygous mutant果蠅皆有減少平均壽命的現象。 Vha16-1所表現的蛋白為Vacuolar-type H+-ATPase (V-ATPase)上的subunit c,V-ATPase主要的功能為藉由消耗ATP來運送氫離子,並可調節胞器或胞外腔室的酸鹼平衡。V-ATPase主要表現在果蠅腸道的copper cell上,此細胞的功能類似於哺乳動物的胃壁細胞(parietal cells),與胃酸的分泌有關,我們發現M2 homozygous mutant果蠅因Vha16-1基因的缺失而有減少腸道酸化的情形發生,符合我們觀察到其在腸道上的表現。此一現象亦在另一株突變果蠅Vha16-1EP2372上加以證實。先前研究顯示果蠅腸道酸鹼平衡的破壞會影響到對養分的吸收,而Vha16-1的缺失亦導致M2果蠅體重與三酸甘油酯的上升,並增加對飢餓的耐受性,而這些代謝上的變化並不會改變M2果蠅對食物的攝取量或者生育能力。綜合這些實驗結果,我們推測Vha16-1基因的缺失會改變腸道功能,並影響果蠅體內代謝的狀態,表現出類似肥胖(obesity)的性狀,而終導致平均壽命的縮短。
Mutagenesis can be induced by many ways and one of the most common approaches used in Drosophila is insertional mutagenesis. In this study, we screened pGawB insertion lines and identified M2 as a novel mutant with affected lifespan. The mutant allele of M2 carried a pGawB inseration at the 5’ end of the Vha16-1 gene, which caused a reduced Vha16-1 mRNA expression level and a shorten lifespan in homozygous mutants under both low calorie (5% yeast and 5% dextrose) and high calorie (15% yeast and 15% dextrose) foods. Vha16-1 encodes the c subunit of the Vacuolar-type H+-ATPase (V-ATPase) which is known to regulate pH homeostasis by pumping protons across organelle and plasma membranes. V-ATPase is highly expressed by the Copper cells which are located at the Drosophila middle midgut and functionally similar to the gastric acid producing parietal cells in mammals. Along the same line, we found that Vha16-1 pGawB drives GFP reporter was observed along the Drosophila gastrointestinal tract. M2 as well as the other Vha16-1 hypomorphic mutant line, EP2372, also showed reduced midgut acidification. This disrupted pH homeostasis in the Drosophila midgut region may be associated with increased body weight, triglyceride, and starvation resistance that observed in M2 mutants. The feeding behavior and reproductive function, however, were not affected in M2 mutant flies. In summary, our data suggested Vha16-1 deficits may alter normal intestinal function or internal metabolic status that ultimately induces obesity phenotypes with reduced lifespan.
參考文獻 Allan AK, Du J, Davies SA, Dow JA (2005) Genome-wide survey of V-ATPase genes in Drosophila reveals a conserved renal phenotype for lethal alleles. Physiol Genomics 22:128-138.
     Allman E, Johnson D, Nehrke K (2009) Loss of the apical V-ATPase a-subunit VHA-6 prevents acidification of the intestinal lumen during a rhythmic behavior in C. elegans. Am J Physiol Cell Physiol 297:C1071-1081.
     Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard JS, Lopez-Lluch G, Lewis K, Pistell PJ, Poosala S, Becker KG, Boss O, Gwinn D, Wang M, Ramaswamy S, Fishbein KW, Spencer RG, Lakatta EG, Le Couteur D, Shaw RJ, Navas P, Puigserver P, Ingram DK, de Cabo R, Sinclair DA (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444:337-342.
     Beyenbach KW, Wieczorek H (2006) The V-type H+ ATPase: molecular structure and function, physiological roles and regulation. J Exp Biol 209:577-589.
     Birse RT, Choi J, Reardon K, Rodriguez J, Graham S, Diop S, Ocorr K, Bodmer R, Oldham S (2010) High-fat-diet-induced obesity and heart dysfunction are regulated by the TOR pathway in Drosophila. Cell Metab 12:533-544.
     Bishop NA, Guarente L (2007) Two neurons mediate diet-restriction-induced longevity in C. elegans. Nature 447:545-549.
     Breton S, Smith PJ, Lui B, Brown D (1996) Acidification of the male reproductive tract by a proton pumping (H+)-ATPase. Nat Med 2:470-472.
     Broughton SJ, Piper MD, Ikeya T, Bass TM, Jacobson J, Driege Y, Martinez P, Hafen E, Withers DJ, Leevers SJ, Partridge L (2005) Longer lifespan, altered metabolism, and stress resistance in Drosophila from ablation of cells making insulin-like ligands. Proc Natl Acad Sci U S A 102:3105-3110.
     Broughton SJ, Slack C, Alic N, Metaxakis A, Bass TM, Driege Y, Partridge L (2010) DILP-producing median neurosecretory cells in the Drosophila brain mediate the response of lifespan to nutrition. Aging Cell 9:336-346.
     Burger JM, Buechel SD, Kawecki TJ (2010) Dietary restriction affects lifespan but not cognitive aging in Drosophila melanogaster. Aging Cell 9:327-335.
     Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley TM, Allison DB, Cruzen C, Simmons HA, Kemnitz JW, Weindruch R (2009) Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 325:201-204.
     Davies SA, Goodwin SF, Kelly DC, Wang Z, Sozen MA, Kaiser K, Dow JA (1996) Analysis and inactivation of vha55, the gene encoding the vacuolar ATPase B-subunit in Drosophila melanogaster reveals a larval lethal phenotype. J Biol Chem 271:30677-30684.
     Dubreuil RR (2004) Copper cells and stomach acid secretion in the Drosophila midgut. Int J Biochem Cell Biol 36:745-752.
     Dubreuil RR, Frankel J, Wang P, Howrylak J, Kappil M, Grushko TA (1998) Mutations of alpha spectrin and labial block cuprophilic cell differentiation and acid secretion in the middle midgut of Drosophila larvae. Dev Biol 194:1-11.
     Dubreuil RR, Grushko T, Baumann O (2001) Differential effects of a labial mutation on the development, structure, and function of stomach acid-secreting cells in Drosophila melanogaster larvae and adults. Cell Tissue Res 306:167-178.
     Edgecomb RS, Harth CE, Schneiderman AM (1994) Regulation of feeding behavior in adult Drosophila melanogaster varies with feeding regime and nutritional state. J Exp Biol 197:215-235.
     Filshie BK, Poulson DF, Waterhouse DF (1971) Ultrastructure of the copper-accumulating region of the Drosophila larval midgut. Tissue Cell 3:77-102.
     Fink CS, Hamosh P, Hamosh M (1984) Fat digestion in the stomach: stability of lingual lipase in the gastric environment. Pediatr Res 18:248-254.
     Fontaine KR, Redden DT, Wang C, Westfall AO, Allison DB (2003) Years of life lost due to obesity. JAMA 289:187-193.
     Gade G, Beenakkers AM (1977) Adipokinetic hormone-induced lipid mobilization and cyclic AMP accumulation in the fat body of Locusta migratoria during development. Gen Comp Endocrinol 32:481-487.
     Gavrilov LA, Gavrilova NS (2002) Evolutionary theories of aging and longevity. ScientificWorldJournal 2:339-356.
     Gronke S, Mildner A, Fellert S, Tennagels N, Petry S, Muller G, Jackle H, Kuhnlein RP (2005) Brummer lipase is an evolutionary conserved fat storage regulator in Drosophila. Cell Metab 1:323-330.
     Gross L, Dreyfuss Y (1990) Prevention of spontaneous and radiation-induced tumors in rats by reduction of food intake. Proc Natl Acad Sci U S A 87:6795-6797.
     Haemmerle G, Zimmermann R, Hayn M, Theussl C, Waeg G, Wagner E, Sattler W, Magin TM, Wagner EF, Zechner R (2002) Hormone-sensitive lipase deficiency in mice causes diglyceride accumulation in adipose tissue, muscle, and testis. J Biol Chem 277:4806-4815.
     Haselton A, Sharmin E, Schrader J, Sah M, Poon P, Fridell YW (2010) Partial ablation of adult Drosophila insulin-producing neurons modulates glucose homeostasis and extends life span without insulin resistance. Cell Cycle 9:3063-3071.
     Holliday LS, Lu M, Lee BS, Nelson RD, Solivan S, Zhang L, Gluck SL (2000) The amino-terminal domain of the B subunit of vacuolar H+-ATPase contains a filamentous actin binding site. J Biol Chem 275:32331-32337.
     Holm C (2003) Molecular mechanisms regulating hormone-sensitive lipase and lipolysis. Biochem Soc Trans 31:1120-1124.
     Karess RE, Rubin GM (1984) Analysis of P transposable element functions in Drosophila. Cell 38:135-146.
     Kirkwood TB, Rose MR (1991) Evolution of senescence: late survival sacrificed for reproduction. Philos Trans R Soc Lond B Biol Sci 332:15-24.
     Krieg DR (1963) Ethyl methanesulfonate-induced reversion of bacteriophage T4rII mutants. Genetics 48:561-580.
     Laski FA, Rio DC, Rubin GM (1986) Tissue specificity of Drosophila P element transposition is regulated at the level of mRNA splicing. Cell 44:7-19.
     Lee G, Park JH (2004) Hemolymph sugar homeostasis and starvation-induced hyperactivity affected by genetic manipulations of the adipokinetic hormone-encoding gene in Drosophila melanogaster. Genetics 167:311-323.
     Lee KP, Simpson SJ, Clissold FJ, Brooks R, Ballard JW, Taylor PW, Soran N, Raubenheimer D (2008) Lifespan and reproduction in Drosophila: New insights from nutritional geometry. Proc Natl Acad Sci U S A 105:2498-2503.
     Lin SJ, Defossez PA, Guarente L (2000) Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 289:2126-2128.
     Lin YJ, Seroude L, Benzer S (1998) Extended life-span and stress resistance in the Drosophila mutant methuselah. Science 282:943-946.
     Maynard JC, Pham T, Zheng T, Jockheck-Clark A, Rankin HB, Newgard CB, Spana EP, Nicchitta CV (2010) Gp93, the Drosophila GRP94 ortholog, is required for gut epithelial homeostasis and nutrient assimilation-coupled growth control. Dev Biol 339:295-306.
     McCay CM, Crowell MF, Maynard LA (1989) The effect of retarded growth upon the length of life span and upon the ultimate body size. 1935. Nutrition 5:155-171; discussion 172.
     Nelson H, Nelson N (1990) Disruption of genes encoding subunits of yeast vacuolar H(+)-ATPase causes conditional lethality. Proc Natl Acad Sci U S A 87:3503-3507.
     Novoseltsev VN, Novoseltseva JA, Boyko SI, Yashin AI (2003) What fecundity patterns indicate about aging and longevity: insights from Drosophila studies. J Gerontol A Biol Sci Med Sci 58:484-494.
     O`Hare K, Rubin GM (1983) Structures of P transposable elements and their sites of insertion and excision in the Drosophila melanogaster genome. Cell 34:25-35.
     Olshansky SJ, Passaro DJ, Hershow RC, Layden J, Carnes BA, Brody J, Hayflick L, Butler RN, Allison DB, Ludwig DS (2005) A potential decline in life expectancy in the United States in the 21st century. N Engl J Med 352:1138-1145.
     Phillips MD, Thomas GH (2006) Brush border spectrin is required for early endosome recycling in Drosophila. J Cell Sci 119:1361-1370.
     Qiu X, Brown K, Hirschey MD, Verdin E, Chen D (2010) Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metab 12:662-667.
     Reis T, Van Gilst MR, Hariharan IK (2010) A buoyancy-based screen of Drosophila larvae for fat-storage mutants reveals a role for Sir2 in coupling fat storage to nutrient availability. PLoS Genet 6:e1001206.
     Robertson HM, Preston CR, Phillis RW, Johnson-Schlitz DM, Benz WK, Engels WR (1988) A stable genomic source of P element transposase in Drosophila melanogaster. Genetics 118:461-470.
     Rogina B, Helfand SL (2004) Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci U S A 101:15998-16003.
     Rogina B, Reenan RA, Nilsen SP, Helfand SL (2000) Extended life-span conferred by cotransporter gene mutations in Drosophila. Science 290:2137-2140.
     Royet J (2011) Epithelial homeostasis and the underlying molecular mechanisms in the gut of the insect model Drosophila melanogaster. Cell Mol Life Sci 68:3651-3660.
     Schlesinger PH, Blair HC, Teitelbaum SL, Edwards JC (1997) Characterization of the osteoclast ruffled border chloride channel and its role in bone resorption. J Biol Chem 272:18636-18643.
     Schwartz NM (1963) Nature of Ethyl Methanesulfonate Induced Reversions of Lac-Mutants of Escherichia Coli. Genetics 48:1357-1375.
     Shanbhag S, Tripathi S (2009) Epithelial ultrastructure and cellular mechanisms of acid and base transport in the Drosophila midgut. J Exp Biol 212:1731-1744.
     Skorupa DA, Dervisefendic A, Zwiener J, Pletcher SD (2008) Dietary composition specifies consumption, obesity, and lifespan in Drosophila melanogaster. Aging Cell 7:478-490.
     Stankovic KM, Brown D, Alper SL, Adams JC (1997) Localization of pH regulating proteins H+ATPase and Cl-/HCO3- exchanger in the guinea pig inner ear. Hear Res 114:21-34.
     Strader AD, Woods SC (2005) Gastrointestinal hormones and food intake. Gastroenterology 128:175-191.
     Tomashek JJ, Brusilow WS (2000) Stoichiometry of energy coupling by proton-translocating ATPases: a history of variability. J Bioenerg Biomembr 32:493-500.
     Vermeulen CJ, Van De Zande L, Bijlsma R (2006) Developmental and age-specific effects of selection on divergent virgin life span on fat content and starvation resistance in Drosophila melanogaster. J Insect Physiol 52:910-919.
     Vitavska O, Merzendorfer H, Wieczorek H (2005) The V-ATPase subunit C binds to polymeric F-actin as well as to monomeric G-actin and induces cross-linking of actin filaments. J Biol Chem 280:1070-1076.
     Wagner CA, Finberg KE, Breton S, Marshansky V, Brown D, Geibel JP (2004) Renal vacuolar H+-ATPase. Physiol Rev 84:1263-1314.
     Wang J, Ho L, Qin W, Rocher AB, Seror I, Humala N, Maniar K, Dolios G, Wang R, Hof PR, Pasinetti GM (2005) Caloric restriction attenuates beta-amyloid neuropathology in a mouse model of Alzheimer`s disease. FASEB J 19:659-661.
     Wang PY, Neretti N, Whitaker R, Hosier S, Chang C, Lu D, Rogina B, Helfand SL (2009) Long-lived Indy and calorie restriction interact to extend life span. Proc Natl Acad Sci U S A 106:9262-9267.
     Wang SP, Laurin N, Himms-Hagen J, Rudnicki MA, Levy E, Robert MF, Pan L, Oligny L, Mitchell GA (2001) The adipose tissue phenotype of hormone-sensitive lipase deficiency in mice. Obes Res 9:119-128.
     Ziegler R, Eckart K, Law JH (1990) Adipokinetic hormone controls lipid metabolism in adults and carbohydrate metabolism in larvae of Manduca sexta. Peptides 11:1037-1040.
     Zimmermann R, Strauss JG, Haemmerle G, Schoiswohl G, Birner-Gruenberger R, Riederer M, Lass A, Neuberger G, Eisenhaber F, Hermetter A, Zechner R (2004) Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306:1383-1386.
     
     Roberts D B (1998) Drosophila: A Practical Approach. Oxford OX: Oxford University Press.
     Greenspan R J (2004) Fly Pushing: The Theory and Practice of Drosophila Genetics. Cold Spring Harbor NY: Cold Spring Harbor Laboratory Press.
描述 碩士
國立政治大學
神經科學研究所
98754008
100
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0098754008
資料類型 thesis
dc.contributor.advisor 王培育zh_TW
dc.contributor.author (Authors) 宋祐陞zh_TW
dc.creator (作者) 宋祐陞zh_TW
dc.date (日期) 2011en_US
dc.date.accessioned 30-Oct-2012 15:22:11 (UTC+8)-
dc.date.available 30-Oct-2012 15:22:11 (UTC+8)-
dc.date.issued (上傳時間) 30-Oct-2012 15:22:11 (UTC+8)-
dc.identifier (Other Identifiers) G0098754008en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/55037-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 神經科學研究所zh_TW
dc.description (描述) 98754008zh_TW
dc.description (描述) 100zh_TW
dc.description.abstract (摘要) 突變生成(mutagenesis)的方式有許多種,其中insertional mutagenesis為果蠅上常使用建立突變株的方式,本篇論文利用p[GawB]隨機插入果蠅genome中產生大量突變株,並篩選出會影響壽命的突變果蠅M2。進一步的實驗發現M2果蠅為Vha16-1基因的突變,並造成其mRNA表現量的下降,且在低卡路里(5% yeast、5% dextrose)與高卡路里(15% yeast、15% dextrose)的環境下homozygous mutant果蠅皆有減少平均壽命的現象。 Vha16-1所表現的蛋白為Vacuolar-type H+-ATPase (V-ATPase)上的subunit c,V-ATPase主要的功能為藉由消耗ATP來運送氫離子,並可調節胞器或胞外腔室的酸鹼平衡。V-ATPase主要表現在果蠅腸道的copper cell上,此細胞的功能類似於哺乳動物的胃壁細胞(parietal cells),與胃酸的分泌有關,我們發現M2 homozygous mutant果蠅因Vha16-1基因的缺失而有減少腸道酸化的情形發生,符合我們觀察到其在腸道上的表現。此一現象亦在另一株突變果蠅Vha16-1EP2372上加以證實。先前研究顯示果蠅腸道酸鹼平衡的破壞會影響到對養分的吸收,而Vha16-1的缺失亦導致M2果蠅體重與三酸甘油酯的上升,並增加對飢餓的耐受性,而這些代謝上的變化並不會改變M2果蠅對食物的攝取量或者生育能力。綜合這些實驗結果,我們推測Vha16-1基因的缺失會改變腸道功能,並影響果蠅體內代謝的狀態,表現出類似肥胖(obesity)的性狀,而終導致平均壽命的縮短。zh_TW
dc.description.abstract (摘要) Mutagenesis can be induced by many ways and one of the most common approaches used in Drosophila is insertional mutagenesis. In this study, we screened pGawB insertion lines and identified M2 as a novel mutant with affected lifespan. The mutant allele of M2 carried a pGawB inseration at the 5’ end of the Vha16-1 gene, which caused a reduced Vha16-1 mRNA expression level and a shorten lifespan in homozygous mutants under both low calorie (5% yeast and 5% dextrose) and high calorie (15% yeast and 15% dextrose) foods. Vha16-1 encodes the c subunit of the Vacuolar-type H+-ATPase (V-ATPase) which is known to regulate pH homeostasis by pumping protons across organelle and plasma membranes. V-ATPase is highly expressed by the Copper cells which are located at the Drosophila middle midgut and functionally similar to the gastric acid producing parietal cells in mammals. Along the same line, we found that Vha16-1 pGawB drives GFP reporter was observed along the Drosophila gastrointestinal tract. M2 as well as the other Vha16-1 hypomorphic mutant line, EP2372, also showed reduced midgut acidification. This disrupted pH homeostasis in the Drosophila midgut region may be associated with increased body weight, triglyceride, and starvation resistance that observed in M2 mutants. The feeding behavior and reproductive function, however, were not affected in M2 mutant flies. In summary, our data suggested Vha16-1 deficits may alter normal intestinal function or internal metabolic status that ultimately induces obesity phenotypes with reduced lifespan.en_US
dc.description.tableofcontents 謝誌 I
     中文摘要 III
     Abstract IV
     目錄 V
     表次 VIII
     圖次 IX
     縮寫對照表 X
     第一章 緒論 1
     第一節、 突變生成(mutagenesis) 1
     一、 Ethyl methanesulfonate (EMS) 1
     二、 Radiation 1
     三、 Insertional mutagenesis 1
     第二節、 Vacuolar-type H+-ATPase 2
     第三節、 果蠅腸道及其功能 4
     第四節、 代謝與老化之關連 5
     第五節、 本論文研究目的 6
     第二章 實驗材料與方法 7
     第一節、果蠅種類及來源 7
     第二節、實驗藥品 7
     第三節、食物培養基配方 8
     第四節、果蠅飼養與存活率分析試驗 8
     第五節、Mutagenesis 9
     第六節、Inverse PCR 11
     一、 Genomic DNA extraction 11
     二、 Restriction enzyme digestion 11
     三、 DNA Ligation 11
     四、 DNA purification 11
     五、 DNA amplification 12
     六、 Genotyping 12
     第七節、及時定量聚合酶連鎖反應 15
     一、 RNA萃取 15
     二、 互補鏈DNA反轉錄反應 15
     三、 及時定量聚合酶連鎖反應 16
     第八節、果蠅產蛋量試驗 17
     第九節、果蠅食物攝取量試驗 17
     第十節、果蠅腸道酸鹼值試驗 17
     第十一節、果蠅三酸甘油酯定量 17
     第十二節、果蠅體重測試 18
     第十三節、果蠅飢餓耐受性測試 18
     第十四節、統計分析 18
     第三章 實驗結果 19
     第一節、 突變株果蠅M2之壽命與突變位置探討 19
     第二節、 Genetic background對突變果蠅M2的影響 25
     第三節、 Vha16-1在果蠅中表現的位置 31
     第四節、 M2果蠅之腸道功能分析 33
     第五節、 M2果蠅之能量儲存探討 38
     第四章 討論 42
     第五章 結論 46
     參考文獻 47
     附錄一、V-ATPase之組成與結構 IX
     附錄二、果蠅成蟲腸道構造圖 X
     附錄三、Inverse PCR產物定序圖譜 XI
zh_TW
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0098754008en_US
dc.subject (關鍵詞) 突變生成zh_TW
dc.subject (關鍵詞) 壽命zh_TW
dc.subject (關鍵詞) 肥胖zh_TW
dc.subject (關鍵詞) 腸道酸化zh_TW
dc.subject (關鍵詞) mutagenesisen_US
dc.subject (關鍵詞) lifespanen_US
dc.subject (關鍵詞) obesityen_US
dc.subject (關鍵詞) gut acidificationen_US
dc.title (題名) Vha16-1對果蠅腸道功能和壽命之調控zh_TW
dc.title (題名) Vha16-1 regulates intestinal function and lifespan in Drosophila melanogasteren_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) Allan AK, Du J, Davies SA, Dow JA (2005) Genome-wide survey of V-ATPase genes in Drosophila reveals a conserved renal phenotype for lethal alleles. Physiol Genomics 22:128-138.
     Allman E, Johnson D, Nehrke K (2009) Loss of the apical V-ATPase a-subunit VHA-6 prevents acidification of the intestinal lumen during a rhythmic behavior in C. elegans. Am J Physiol Cell Physiol 297:C1071-1081.
     Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard JS, Lopez-Lluch G, Lewis K, Pistell PJ, Poosala S, Becker KG, Boss O, Gwinn D, Wang M, Ramaswamy S, Fishbein KW, Spencer RG, Lakatta EG, Le Couteur D, Shaw RJ, Navas P, Puigserver P, Ingram DK, de Cabo R, Sinclair DA (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444:337-342.
     Beyenbach KW, Wieczorek H (2006) The V-type H+ ATPase: molecular structure and function, physiological roles and regulation. J Exp Biol 209:577-589.
     Birse RT, Choi J, Reardon K, Rodriguez J, Graham S, Diop S, Ocorr K, Bodmer R, Oldham S (2010) High-fat-diet-induced obesity and heart dysfunction are regulated by the TOR pathway in Drosophila. Cell Metab 12:533-544.
     Bishop NA, Guarente L (2007) Two neurons mediate diet-restriction-induced longevity in C. elegans. Nature 447:545-549.
     Breton S, Smith PJ, Lui B, Brown D (1996) Acidification of the male reproductive tract by a proton pumping (H+)-ATPase. Nat Med 2:470-472.
     Broughton SJ, Piper MD, Ikeya T, Bass TM, Jacobson J, Driege Y, Martinez P, Hafen E, Withers DJ, Leevers SJ, Partridge L (2005) Longer lifespan, altered metabolism, and stress resistance in Drosophila from ablation of cells making insulin-like ligands. Proc Natl Acad Sci U S A 102:3105-3110.
     Broughton SJ, Slack C, Alic N, Metaxakis A, Bass TM, Driege Y, Partridge L (2010) DILP-producing median neurosecretory cells in the Drosophila brain mediate the response of lifespan to nutrition. Aging Cell 9:336-346.
     Burger JM, Buechel SD, Kawecki TJ (2010) Dietary restriction affects lifespan but not cognitive aging in Drosophila melanogaster. Aging Cell 9:327-335.
     Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley TM, Allison DB, Cruzen C, Simmons HA, Kemnitz JW, Weindruch R (2009) Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 325:201-204.
     Davies SA, Goodwin SF, Kelly DC, Wang Z, Sozen MA, Kaiser K, Dow JA (1996) Analysis and inactivation of vha55, the gene encoding the vacuolar ATPase B-subunit in Drosophila melanogaster reveals a larval lethal phenotype. J Biol Chem 271:30677-30684.
     Dubreuil RR (2004) Copper cells and stomach acid secretion in the Drosophila midgut. Int J Biochem Cell Biol 36:745-752.
     Dubreuil RR, Frankel J, Wang P, Howrylak J, Kappil M, Grushko TA (1998) Mutations of alpha spectrin and labial block cuprophilic cell differentiation and acid secretion in the middle midgut of Drosophila larvae. Dev Biol 194:1-11.
     Dubreuil RR, Grushko T, Baumann O (2001) Differential effects of a labial mutation on the development, structure, and function of stomach acid-secreting cells in Drosophila melanogaster larvae and adults. Cell Tissue Res 306:167-178.
     Edgecomb RS, Harth CE, Schneiderman AM (1994) Regulation of feeding behavior in adult Drosophila melanogaster varies with feeding regime and nutritional state. J Exp Biol 197:215-235.
     Filshie BK, Poulson DF, Waterhouse DF (1971) Ultrastructure of the copper-accumulating region of the Drosophila larval midgut. Tissue Cell 3:77-102.
     Fink CS, Hamosh P, Hamosh M (1984) Fat digestion in the stomach: stability of lingual lipase in the gastric environment. Pediatr Res 18:248-254.
     Fontaine KR, Redden DT, Wang C, Westfall AO, Allison DB (2003) Years of life lost due to obesity. JAMA 289:187-193.
     Gade G, Beenakkers AM (1977) Adipokinetic hormone-induced lipid mobilization and cyclic AMP accumulation in the fat body of Locusta migratoria during development. Gen Comp Endocrinol 32:481-487.
     Gavrilov LA, Gavrilova NS (2002) Evolutionary theories of aging and longevity. ScientificWorldJournal 2:339-356.
     Gronke S, Mildner A, Fellert S, Tennagels N, Petry S, Muller G, Jackle H, Kuhnlein RP (2005) Brummer lipase is an evolutionary conserved fat storage regulator in Drosophila. Cell Metab 1:323-330.
     Gross L, Dreyfuss Y (1990) Prevention of spontaneous and radiation-induced tumors in rats by reduction of food intake. Proc Natl Acad Sci U S A 87:6795-6797.
     Haemmerle G, Zimmermann R, Hayn M, Theussl C, Waeg G, Wagner E, Sattler W, Magin TM, Wagner EF, Zechner R (2002) Hormone-sensitive lipase deficiency in mice causes diglyceride accumulation in adipose tissue, muscle, and testis. J Biol Chem 277:4806-4815.
     Haselton A, Sharmin E, Schrader J, Sah M, Poon P, Fridell YW (2010) Partial ablation of adult Drosophila insulin-producing neurons modulates glucose homeostasis and extends life span without insulin resistance. Cell Cycle 9:3063-3071.
     Holliday LS, Lu M, Lee BS, Nelson RD, Solivan S, Zhang L, Gluck SL (2000) The amino-terminal domain of the B subunit of vacuolar H+-ATPase contains a filamentous actin binding site. J Biol Chem 275:32331-32337.
     Holm C (2003) Molecular mechanisms regulating hormone-sensitive lipase and lipolysis. Biochem Soc Trans 31:1120-1124.
     Karess RE, Rubin GM (1984) Analysis of P transposable element functions in Drosophila. Cell 38:135-146.
     Kirkwood TB, Rose MR (1991) Evolution of senescence: late survival sacrificed for reproduction. Philos Trans R Soc Lond B Biol Sci 332:15-24.
     Krieg DR (1963) Ethyl methanesulfonate-induced reversion of bacteriophage T4rII mutants. Genetics 48:561-580.
     Laski FA, Rio DC, Rubin GM (1986) Tissue specificity of Drosophila P element transposition is regulated at the level of mRNA splicing. Cell 44:7-19.
     Lee G, Park JH (2004) Hemolymph sugar homeostasis and starvation-induced hyperactivity affected by genetic manipulations of the adipokinetic hormone-encoding gene in Drosophila melanogaster. Genetics 167:311-323.
     Lee KP, Simpson SJ, Clissold FJ, Brooks R, Ballard JW, Taylor PW, Soran N, Raubenheimer D (2008) Lifespan and reproduction in Drosophila: New insights from nutritional geometry. Proc Natl Acad Sci U S A 105:2498-2503.
     Lin SJ, Defossez PA, Guarente L (2000) Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 289:2126-2128.
     Lin YJ, Seroude L, Benzer S (1998) Extended life-span and stress resistance in the Drosophila mutant methuselah. Science 282:943-946.
     Maynard JC, Pham T, Zheng T, Jockheck-Clark A, Rankin HB, Newgard CB, Spana EP, Nicchitta CV (2010) Gp93, the Drosophila GRP94 ortholog, is required for gut epithelial homeostasis and nutrient assimilation-coupled growth control. Dev Biol 339:295-306.
     McCay CM, Crowell MF, Maynard LA (1989) The effect of retarded growth upon the length of life span and upon the ultimate body size. 1935. Nutrition 5:155-171; discussion 172.
     Nelson H, Nelson N (1990) Disruption of genes encoding subunits of yeast vacuolar H(+)-ATPase causes conditional lethality. Proc Natl Acad Sci U S A 87:3503-3507.
     Novoseltsev VN, Novoseltseva JA, Boyko SI, Yashin AI (2003) What fecundity patterns indicate about aging and longevity: insights from Drosophila studies. J Gerontol A Biol Sci Med Sci 58:484-494.
     O`Hare K, Rubin GM (1983) Structures of P transposable elements and their sites of insertion and excision in the Drosophila melanogaster genome. Cell 34:25-35.
     Olshansky SJ, Passaro DJ, Hershow RC, Layden J, Carnes BA, Brody J, Hayflick L, Butler RN, Allison DB, Ludwig DS (2005) A potential decline in life expectancy in the United States in the 21st century. N Engl J Med 352:1138-1145.
     Phillips MD, Thomas GH (2006) Brush border spectrin is required for early endosome recycling in Drosophila. J Cell Sci 119:1361-1370.
     Qiu X, Brown K, Hirschey MD, Verdin E, Chen D (2010) Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metab 12:662-667.
     Reis T, Van Gilst MR, Hariharan IK (2010) A buoyancy-based screen of Drosophila larvae for fat-storage mutants reveals a role for Sir2 in coupling fat storage to nutrient availability. PLoS Genet 6:e1001206.
     Robertson HM, Preston CR, Phillis RW, Johnson-Schlitz DM, Benz WK, Engels WR (1988) A stable genomic source of P element transposase in Drosophila melanogaster. Genetics 118:461-470.
     Rogina B, Helfand SL (2004) Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci U S A 101:15998-16003.
     Rogina B, Reenan RA, Nilsen SP, Helfand SL (2000) Extended life-span conferred by cotransporter gene mutations in Drosophila. Science 290:2137-2140.
     Royet J (2011) Epithelial homeostasis and the underlying molecular mechanisms in the gut of the insect model Drosophila melanogaster. Cell Mol Life Sci 68:3651-3660.
     Schlesinger PH, Blair HC, Teitelbaum SL, Edwards JC (1997) Characterization of the osteoclast ruffled border chloride channel and its role in bone resorption. J Biol Chem 272:18636-18643.
     Schwartz NM (1963) Nature of Ethyl Methanesulfonate Induced Reversions of Lac-Mutants of Escherichia Coli. Genetics 48:1357-1375.
     Shanbhag S, Tripathi S (2009) Epithelial ultrastructure and cellular mechanisms of acid and base transport in the Drosophila midgut. J Exp Biol 212:1731-1744.
     Skorupa DA, Dervisefendic A, Zwiener J, Pletcher SD (2008) Dietary composition specifies consumption, obesity, and lifespan in Drosophila melanogaster. Aging Cell 7:478-490.
     Stankovic KM, Brown D, Alper SL, Adams JC (1997) Localization of pH regulating proteins H+ATPase and Cl-/HCO3- exchanger in the guinea pig inner ear. Hear Res 114:21-34.
     Strader AD, Woods SC (2005) Gastrointestinal hormones and food intake. Gastroenterology 128:175-191.
     Tomashek JJ, Brusilow WS (2000) Stoichiometry of energy coupling by proton-translocating ATPases: a history of variability. J Bioenerg Biomembr 32:493-500.
     Vermeulen CJ, Van De Zande L, Bijlsma R (2006) Developmental and age-specific effects of selection on divergent virgin life span on fat content and starvation resistance in Drosophila melanogaster. J Insect Physiol 52:910-919.
     Vitavska O, Merzendorfer H, Wieczorek H (2005) The V-ATPase subunit C binds to polymeric F-actin as well as to monomeric G-actin and induces cross-linking of actin filaments. J Biol Chem 280:1070-1076.
     Wagner CA, Finberg KE, Breton S, Marshansky V, Brown D, Geibel JP (2004) Renal vacuolar H+-ATPase. Physiol Rev 84:1263-1314.
     Wang J, Ho L, Qin W, Rocher AB, Seror I, Humala N, Maniar K, Dolios G, Wang R, Hof PR, Pasinetti GM (2005) Caloric restriction attenuates beta-amyloid neuropathology in a mouse model of Alzheimer`s disease. FASEB J 19:659-661.
     Wang PY, Neretti N, Whitaker R, Hosier S, Chang C, Lu D, Rogina B, Helfand SL (2009) Long-lived Indy and calorie restriction interact to extend life span. Proc Natl Acad Sci U S A 106:9262-9267.
     Wang SP, Laurin N, Himms-Hagen J, Rudnicki MA, Levy E, Robert MF, Pan L, Oligny L, Mitchell GA (2001) The adipose tissue phenotype of hormone-sensitive lipase deficiency in mice. Obes Res 9:119-128.
     Ziegler R, Eckart K, Law JH (1990) Adipokinetic hormone controls lipid metabolism in adults and carbohydrate metabolism in larvae of Manduca sexta. Peptides 11:1037-1040.
     Zimmermann R, Strauss JG, Haemmerle G, Schoiswohl G, Birner-Gruenberger R, Riederer M, Lass A, Neuberger G, Eisenhaber F, Hermetter A, Zechner R (2004) Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306:1383-1386.
     
     Roberts D B (1998) Drosophila: A Practical Approach. Oxford OX: Oxford University Press.
     Greenspan R J (2004) Fly Pushing: The Theory and Practice of Drosophila Genetics. Cold Spring Harbor NY: Cold Spring Harbor Laboratory Press.
zh_TW