學術產出-學位論文

文章檢視/開啟

書目匯出

Google ScholarTM

政大圖書館

引文資訊

TAIR相關學術產出

題名 熱帶導數與熱帶反導數
Tropical Derivatives and Anti-derivatives
作者 王靜萍
貢獻者 蔡炎龍
王靜萍
關鍵詞 熱帶導數
熱帶反導數
熱帶多項式
Tropical Derivatives
Tropical Anti-derivatives
Tropical Polynomials
日期 2012
上傳時間 1-二月-2013 16:53:20 (UTC+8)
摘要 在這篇論文中,我們定義了熱帶導數和熱帶反導數.當我們對兩個相同的熱帶多項式求導數時,可能會得到不同的函數.為了克服此困難,我們限制在最大係數多項式下才求導數.熱帶導數的定義與古典導數相當不同.特別的是,我們有d/dxan⊙x^(⊙n)= an⊙x⊙n-1.將它線性化,我們得到d/dx[an⊙x^(⊙n)⊕an-1⊙x⊙n-1 ⊕…. a1⊙x⊕a0] = an⊙x⊙n-1 ⊕an-1⊙x⊙n-2⊕…⊕a1.我們將會解釋為什麼使用這種定義.導數對了解熱帶幾何很有幫助,它也引出了一些與古典導數相似的資訊.最後,我們討論如何定義及求熱帶多項式的熱帶反導數
In this thesis, we define the tropical derivatives and anti-derivatives. When we differ-
entiate two identical tropical polynomials, we might get two different functions. In order to overcome the diffculties, we restrict the polynomials to largest coeffcient polynomials to avoid unpredictable results when taking derivatives. The definitiion of the tropical derivatives is quite diffrent from the definition of classical derivatives. In particular, we have d/dxan⊙x^(⊙n)= an⊙x⊙n-1 . To extend it linearly, we obtain d/dx[an⊙x^(⊙n)⊕
a n-1⊙x⊙n-1 ⊕…. a1⊙x⊕a0] = an⊙x⊙n-1 ⊕a n-1⊙x⊙n-2⊕…⊕a1. We will explain why we use this kind of definition. The derivatives are helpful in understanding more about tropical geometry, and it carries out some information similar to classical derivatives. Finally, we discuss how to define and find tropical anti-derivatives for tropical polynomials.
Keywords : Tropical derivatives, tropical anti-derivatives, tropical polynomials.
參考文獻 [1] I.Simon, Recognizable sets with multiplicities in the tropical semiring. Mathematical foundations of computer science, (Carlsbad, 1988), 107-120, Lecture Notes in
Comput, Sci., 324, Springer, Berlin, 1988.
[2] Julian Tay, Tropical Derivatives And Duality. Honor`s thesis, Brigham Young University, 2007.
[3] Yen-Lung Tsai, Working With Tropical Meromorphic Functions Of One Variable. Taiwanese J. Math., 16(2), 2012.
[4] David Speyer and Bernd Sturmfels, Tropical Mathematics. Math. Mag. 82(3), 2009.
[5] Gen-Wei Huang, Visualization of Tropical Curves. Master`s thesis, National Chengchi University, Taipei Taiwan, 2009.
[6] Jurgen Richter-Gebert, Bernd Sturmfels, and Thorsten Theobald. First steps in tropical geometry. Contemp. Math., 377, 2005.
描述 碩士
國立政治大學
應用數學系數學教學碩士在職專班
99972004
101
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0099972004
資料類型 thesis
dc.contributor.advisor 蔡炎龍zh_TW
dc.contributor.author (作者) 王靜萍zh_TW
dc.creator (作者) 王靜萍zh_TW
dc.date (日期) 2012en_US
dc.date.accessioned 1-二月-2013 16:53:20 (UTC+8)-
dc.date.available 1-二月-2013 16:53:20 (UTC+8)-
dc.date.issued (上傳時間) 1-二月-2013 16:53:20 (UTC+8)-
dc.identifier (其他 識別碼) G0099972004en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/56882-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 應用數學系數學教學碩士在職專班zh_TW
dc.description (描述) 99972004zh_TW
dc.description (描述) 101zh_TW
dc.description.abstract (摘要) 在這篇論文中,我們定義了熱帶導數和熱帶反導數.當我們對兩個相同的熱帶多項式求導數時,可能會得到不同的函數.為了克服此困難,我們限制在最大係數多項式下才求導數.熱帶導數的定義與古典導數相當不同.特別的是,我們有d/dxan⊙x^(⊙n)= an⊙x⊙n-1.將它線性化,我們得到d/dx[an⊙x^(⊙n)⊕an-1⊙x⊙n-1 ⊕…. a1⊙x⊕a0] = an⊙x⊙n-1 ⊕an-1⊙x⊙n-2⊕…⊕a1.我們將會解釋為什麼使用這種定義.導數對了解熱帶幾何很有幫助,它也引出了一些與古典導數相似的資訊.最後,我們討論如何定義及求熱帶多項式的熱帶反導數zh_TW
dc.description.abstract (摘要) In this thesis, we define the tropical derivatives and anti-derivatives. When we differ-
entiate two identical tropical polynomials, we might get two different functions. In order to overcome the diffculties, we restrict the polynomials to largest coeffcient polynomials to avoid unpredictable results when taking derivatives. The definitiion of the tropical derivatives is quite diffrent from the definition of classical derivatives. In particular, we have d/dxan⊙x^(⊙n)= an⊙x⊙n-1 . To extend it linearly, we obtain d/dx[an⊙x^(⊙n)⊕
a n-1⊙x⊙n-1 ⊕…. a1⊙x⊕a0] = an⊙x⊙n-1 ⊕a n-1⊙x⊙n-2⊕…⊕a1. We will explain why we use this kind of definition. The derivatives are helpful in understanding more about tropical geometry, and it carries out some information similar to classical derivatives. Finally, we discuss how to define and find tropical anti-derivatives for tropical polynomials.
Keywords : Tropical derivatives, tropical anti-derivatives, tropical polynomials.
en_US
dc.description.tableofcontents Abstract i
中文摘要 iii
1 Introduction 1
2 Arithmetic of the Max-plus Semiring 3
2.1 Largest Coe_cient Polynomials . . . . . . . . . . . . .. . . . 7
3 Tropical Derivatives 13
3.1 Di_erentiating the Puiseux Series . . . . . . . . . . . . . . 13
3.2 The De_nition of Tropical Derivatives . . .. . . . . . . . 16
3.3 Properties of the Tropical Derivatives . . . . . . . . . . . 18
3.3.1 Product Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.2 Chain Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4 Tropical Anti-derivatives …………………………….22
4.1 Integrating Tropical Polynomials . . . . . . . . . . . . . . . 22
5 Conclusion…………………………………………… 25
Bibliography…………………………………………… 27
zh_TW
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0099972004en_US
dc.subject (關鍵詞) 熱帶導數zh_TW
dc.subject (關鍵詞) 熱帶反導數zh_TW
dc.subject (關鍵詞) 熱帶多項式zh_TW
dc.subject (關鍵詞) Tropical Derivativesen_US
dc.subject (關鍵詞) Tropical Anti-derivativesen_US
dc.subject (關鍵詞) Tropical Polynomialsen_US
dc.title (題名) 熱帶導數與熱帶反導數zh_TW
dc.title (題名) Tropical Derivatives and Anti-derivativesen_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) [1] I.Simon, Recognizable sets with multiplicities in the tropical semiring. Mathematical foundations of computer science, (Carlsbad, 1988), 107-120, Lecture Notes in
Comput, Sci., 324, Springer, Berlin, 1988.
[2] Julian Tay, Tropical Derivatives And Duality. Honor`s thesis, Brigham Young University, 2007.
[3] Yen-Lung Tsai, Working With Tropical Meromorphic Functions Of One Variable. Taiwanese J. Math., 16(2), 2012.
[4] David Speyer and Bernd Sturmfels, Tropical Mathematics. Math. Mag. 82(3), 2009.
[5] Gen-Wei Huang, Visualization of Tropical Curves. Master`s thesis, National Chengchi University, Taipei Taiwan, 2009.
[6] Jurgen Richter-Gebert, Bernd Sturmfels, and Thorsten Theobald. First steps in tropical geometry. Contemp. Math., 377, 2005.
zh_TW