dc.contributor.advisor | 蕭又新 | zh_TW |
dc.contributor.advisor | Shiau, You Hsien | en_US |
dc.contributor.author (作者) | 易敬剛 | zh_TW |
dc.contributor.author (作者) | Yi, Ching Kang | en_US |
dc.creator (作者) | 易敬剛 | zh_TW |
dc.creator (作者) | Yi, Ching Kang | en_US |
dc.date (日期) | 2012 | en_US |
dc.date.accessioned | 2-九月-2013 16:56:43 (UTC+8) | - |
dc.date.available | 2-九月-2013 16:56:43 (UTC+8) | - |
dc.date.issued (上傳時間) | 2-九月-2013 16:56:43 (UTC+8) | - |
dc.identifier (其他 識別碼) | G0100755006 | en_US |
dc.identifier.uri (URI) | http://nccur.lib.nccu.edu.tw/handle/140.119/59447 | - |
dc.description (描述) | 碩士 | zh_TW |
dc.description (描述) | 國立政治大學 | zh_TW |
dc.description (描述) | 應用物理研究所 | zh_TW |
dc.description (描述) | 100755006 | zh_TW |
dc.description (描述) | 101 | zh_TW |
dc.description.abstract (摘要) | 於歷史事件中我們知道電力網路中些許的傷害會導致大停電事件的發生,而電力網路的安全是學者們一直以來關心的議題,複雜網路發展至今,已有不少研究人員利用複雜網路的方法來分析電力網路,本論文即利用複雜網路的分析方法,分析台灣電力網路脆弱性,並提出一新穎的保護策略。 文章中引用三種分析方法分析台灣電力網路的脆弱性,第一為根據網路效率(efficiency of complex network),第二為根據靜態負載的連鎖性失效(static load cascading failure),第三為根據動態負載的連鎖性失效(dynamic load cascading failure),三種脆弱性分析的方法得到結果的交集處,在文中被認為是電力網路中最具風險的變電站。根據靜態負載的連鎖性失效的結果,我們在不改變網路結構和整體網路的負載量之下,提出一新穎的安全策略,試圖降低靜態負載時連鎖性失效帶來的傷害,並分析此安全策應用至ER隨機網路(ER random network)、BA無尺度網路(BA scale-free network)和台灣電力網路,且量化其結果。 三種脆弱分析的結果皆有共通的部份,表示台灣電力網路在拓樸分析下並不堅固,其結果顯示此安全策略是有效的。本篇論文分析的網路均是無權重也無方向性的網路,如此,未來在網路脆弱性與安全策略的研究還有進一步的研究空間。 | zh_TW |
dc.description.abstract (摘要) | From blackout events in history, we know the damage of a few substations or transmission lines can lead to a big blackout, and the robustness of power grids are always a great concern. Recently the topological analyses of power grid network have developed rapidly and its achievements have become a center of attention. This thesis aims to investigate the vulnerability of Taiwan’s power grid through topological analyses and propose a novel protection strategy. This thesis introduces three methods to investigate the vulnerability of Taiwan’s power grid. The first method is based on efficiency of complex network. The second method is based on static load cascading failure. The third method is based on dynamic load cascading failure. The common results of the three results are considered the high risks in Taiwan’s power grid. According to the static load cascading failure, we propose a protection strategy against cascading failure without changing the structure of network and the whole load of the network, and then demonstrate the effectiveness of this strategy on an ER random network, a BA scale-free network and Taiwan’s power grid numerically. The three methods having the common results, one may say Taiwan’s power grid isn’t robust under the topological analyses, and our protection strategy may be useful for decreasing the damage after cascading failure. | en_US |
dc.description.tableofcontents | 1 INTRODUCTION 1 2 ANALYZING METHODS AND TOOLS 4 2.1 COMPONENTS OF NETWORK STRUCTURE 4 2.2 ADJACENCY MATRIX 5 2.3 DEGREE 5 2.4 CLUSTERING COEFFICIENT 6 2.5 SHORTEST PATH 7 2.6 NETWORK MODEL 8 2.6.1 ER model 8 2.6.2 BA model 9 3 VULNERABILITY ANALYZING METHODS 12 3.1 EFFICIENCY 12 3.2 CASCADING FAILURES OF COMPLEX NETWORKS 13 3.2.1 Static load (betweenness centrality) 14 3.2.2 Dynamic load (dynamic flow model) 16 3.2.3 Capacity and relative size 18 4 MITIGATION STRATEGY AGAINST STATIC LOAD CASCADING FAILURE 21 5 VULNERABILITY OF TAIWAN POWER GRID 29 5.1 EFFICIENCY 32 5.2 STATIC LOAD CASCADING FAILURE 33 5.3 DYNAMIC LOAD CASCADING FAILURE 41 5.4 PROPERTIES OF VULNERABLE NODE 48 5.5 DISCUSSION 49 6 SIMULATION ANALYSIS OF THE MITIGATION STRATEGY 50 6.1 APPLICATION ON BA MODEL AND ER MODEL 50 6.2 APPLICATION ON TAIWAN POWER GRID 54 6.3 DISCUSSION 62 7 CONCLUSION AND FUTURE WORKS 63 REFERENCE 65 | zh_TW |
dc.language.iso | en_US | - |
dc.source.uri (資料來源) | http://thesis.lib.nccu.edu.tw/record/#G0100755006 | en_US |
dc.subject (關鍵詞) | 電力網路 | zh_TW |
dc.subject (關鍵詞) | 複雜網路 | zh_TW |
dc.subject (關鍵詞) | 連鎖性失效行為 | zh_TW |
dc.subject (關鍵詞) | 脆弱分析 | zh_TW |
dc.subject (關鍵詞) | 安全策略 | zh_TW |
dc.subject (關鍵詞) | power grid | en_US |
dc.subject (關鍵詞) | complex network | en_US |
dc.subject (關鍵詞) | cascading failure | en_US |
dc.subject (關鍵詞) | vulnerability | en_US |
dc.subject (關鍵詞) | protection strategy | en_US |
dc.title (題名) | 基於圖形理論的電網脆弱性分析及抵禦連鎖性失效之安全策略 | zh_TW |
dc.title (題名) | Graph-based vulnerability analyses on power grid and associated protection strategies against cascading failures | en_US |
dc.type (資料類型) | thesis | en |
dc.relation.reference (參考文獻) | Barabäsi, A. L. and R. Albert (1999). "Emergence of Scaling in Random Networks." Science 286: 509-512. Brandes, U. (2001). "A Faster Algorithm for Betweenness Centrality." Mathematical Sociology 25(2): 163-177. Crucittia, P., et al. (2004). "Error and attack tolerance of complex networks." Physica A 340: 388-394. Erdős, P. and A. Rényi (1960). "On The Evolution Of Random Graphs." PUBLICATION OF THE MATHEMATICAL INSTITUTE OF THE HUNGARIAN ACADEMY OF SCIENCES. Eusgeld, I., et al. (2009). "The role of network theory and object-oriented modeling within a framework for the vulnerability analysis of critical infrastructures." Reliability Engineering and System Safety 94: 954-963. Glanz, J. and R. Perez-Pena (2003). That Left Tens of Millions of People in the Dark. New York Times. 26. Goh, K. I., et al. (2001). "Universal Behavior of Load Distribution in Scale-free Networks." Physical Review Letters 87. Holme, P. and B. J. Kim (2002). "Attack vulnerability of complex networks." Physical Review E 65. Latora, V. and M. Marchiori (2001). "Efficient Behavior of Small-World Networks." Physical Review Letters 87. Liu, Y. H. (2012). Computational large-scale complex networks : competition network and power grid. Applied Physics, National Chengchi University. Motter, A. E. (2004). "Cascade control and defense in complex networks." Physical Review Letters 93. Motter, A. E. and Y.-C. Lai (2002). "Cascade-based attacks on complex networks." Physical Review E 66(065102). Newman, M. (2010). Networks: An Introduction. New York, Oxford University Press Ng, A. K. S. and J. Efstathiou (2006). Structural Robustness of Complex networks. Engineering Science, Oxford. Pahwa, S., et al. (2010). Topological Analysis of the Power Grid and Mitigation Strategies Against Cascading Failures. 2010 4th Annual IEEE Systems Conference. San Diego, CA, Systems Conference, 2010 4th Annual IEEE: 272-276. Simonsen, I., et al. (2008). "Transient Dynamics Increasing Network Vulnerability to Cascading Failures." Physical Review Letters 100. Strogatz, S. H. (2001). "Exploring complex networks." Nature 410: 268-276. Wang, I. W. and L. L. Rong (2009). "A model for cascading failures in scale-free networks with a breakdown probability." Physica A 388: 1289-1298. Wang, J. (2013). "Robustness of complex networks with the local protection strategy against cascading failures." Safety Science 53: 219-225. Wang, J. W. and L. L. Rong (2011). "Robustness of the western United States power grid under edge attack strategies due to cascading failures." Safety Science 49: 807-812. Wang, W.-X. and G. Chen (2008). "Universal robustness characteristic of weighted networks against cascading failure." Physical Review E 77. Wong, J. J. (2007). Study of Preventive and Remedial Strategies based on Simulations and Analyses of 729 Blackout in Taiwan Power System. Electrical Engineering, National Chung Cheng University. Yong, S. S. (2004). "Revelation of America and Europe Great Blackout in 2003." Electrical Equipment 5(2). Zhu, Y., et al. (2012). Load Distribution Vector Based Attack Strategies against Power Grid Systems. Globecom 2012 - Communication and Information System Security Symposium. Anaheim, CA, Global Communications Conference (GLOBECOM), 2012 IEEE: 935 - 941. | zh_TW |