學術產出-學位論文

文章檢視/開啟

書目匯出

Google ScholarTM

政大圖書館

引文資訊

TAIR相關學術產出

題名 應用全波形空載雷射掃描資料於山區地物分類
Land cover Classification in Mountain Area Using Full-waveform Airborne Laser Scanned Data
作者 湯舜閔
Tang, Shun Min
貢獻者 林士淵
Lin, Shih Yuan
湯舜閔
Tang, Shun Min
關鍵詞 空載雷射掃描
全波形
貝氏定理
地物分類
Airborne laser scanning
Full-waveform
Bayes Theorem
Land cover classification
日期 2012
上傳時間 2-九月-2013 17:09:46 (UTC+8)
摘要 空載雷射掃描為一可快速獲取地面物體三維空間資訊之技術,而新型發展之全波形(Full-Waveform)系統可完整記錄雷射回波訊號之波形,透過波形偵測與波形擬合等資料前處理,可得到代表地物獨特反射特性的波形參數資料,包括振幅值(Amplitude)、波形寬(Pulse-width)與後續計算之散射截面積係數(Backscatter cross-section coefficient)。
得到各點位之波形資料後,將以波形資料為主進行位於山區之實驗區地物分類,並將使用由實驗區航照影像提供之RGB波段光譜資料計算之綠度指數(Greenness)與計算影像灰階統計值之紋理參數如均質度(Homogeneity)、熵值(Entropy)與R波段平均值(Mean)等參數輔助分類。分類進行之前,透過抽樣實驗區候選地類包括樹林、草地、道路與樹種建物,並以貝氏定理(Bayes Theorem)分析計算不同地物類別在各分類參數區間內的貝氏機率,接著以多項式函數擬合各地類在不同參數之貝氏機率曲線,並以計算反曲點之方式自動化決定該分類參數之門檻值區間。
分類成果顯示,全波形系統提供之波形資料對於受上層植物遮蔽與陰影區之植物點與道路點之分類有顯著之成果,且透過物體對於波形資料之反射特性不同,具備應用於區別不同建築材質類別之潛力。
Airborne Laser Scanning is a technique capable of acquiring 3D information of land objects. The latest full-waveform system is further improved with the ability of recording complete waveform of reflected laser signal. After the preprocessing procedures such as pulse detection and pulse fitting, the waveform information including amplitude, pulse width and backscatter cross-section were derived. Such information was valuable as they represented unique properties of land objects.
In this study, waveform information of all scanned points were utilized to classify land cover in the test area located in mountain area. Additionally, the Greenness value as well as the texture parameters such as Homogeneity, Entropy and Mean of R band calculated from the ortho-image were used for classification. We aimed to classify the point cloud into vegetation, road and building categories. The Bayes Theorem was used to determine the threshold range of each parameters for classification. As a result, the waveform information were useful for classifying road points covered by upper vegetation points and also vegetation and road points located in shadow area. Moreover, through the analysis of reflective properties of different object using waveform parameters, it was of potential to be applied to distinguish material of buildings.
參考文獻 一、 中文參考文獻
王淼、湯凱佩、曾義星,2005,「光達資料八分樹結構化於平面特徵萃取」,『航測及遙測學刊』,10(1) :59-70。
林耿帆、邱彥瑋、張智昌、徐百輝,2011,「以物件導向結合影像與光達點雲資料之地物分類」。台灣地理資訊學會年會暨學術研討會。
林光賢、陳天進、劉明郎,2008,『微積分』二版,台北: 華泰文化。
林惠玲、陳正倉,2011,『應用統計學』四版修訂版,台北: 雙葉書廊。
林郁珊,2012,「應用空載全波形光達資料於波形分析與地物分類」。國立交通大學土木工程學系碩士論文:新竹。
邱智遠,2008,「應用混合式分類法融合光達高度資料於都市地物分類之研究」。國立中山大學海洋環境及工程學系碩士論文:高雄。
高玉惠,2004,「小波轉換應用於影像自動判釋崩塌地分析」。國立成功大學地球科學研究所碩士論文:台南。
劉治中、蕭國鑫、饒見有、劉進金、吳哲榮、黃群修,2010,「結合空載LiDAR與彩色航照應用於崩塌地研判」,『航測及遙測學刊』,15(1) : 111-122。
賴志恆,2003,「雷射掃描點雲資料八分樹結構化之研究」。國立成功大學測量工程學系碩士論文:台南。
羅仕東,2011,「整合八分樹結構與適應性網格於光達資料重建室內建物三維模型之研究」。國立中央大學土木工程學系碩士論文:桃園。
行政院農業委員會林務局,1995,「第三次台灣森林資源及土地利用調查」。

二、 外文參考文獻
Alexander, C., Tansey, K., Kaduk, J., Holland, D. and Tate, N,-J, 2010, “Backscatter coefficient as an attribute for the classification of full-waveform airborne laser scanning data in urban areas”, ISPRS Journal of Photogrammetry and Remote Sensing, 2010, 65 (5), pp. 423-432.
Amann, M.-C., Bosch, T., Lescure, M., Myllylä, R. and Rioux, M., 2001. Laser ranging: a critical review of usual techniques for distance measurement. Optical Engineering, 40(1):10-19.
Antonarakis, A.-S., Richards, K.-S. and Brasinton, J., 2008 “Object-based land cover classification using airborne LiDAR”, Remote Sensing of Environment 112(2008) 2988-2998.
Beraldin, J. A., Blais, F. and Lohr, U., 2010, “Laser Scanning Technology”, pp.1-42 in Airborne and terrestrial Laser Scanning, edited by Vosselmen, G. and Maas, H-G., UK: Whittles Publishing.
Bretar, F ., Chauve, A ., Bailly, J. S., Mallet, C. and Jacome, A., 2009, “Terrain surfaces and 3-D landcover classification from full-waveform lidar data”, Hydrol. Earth Syst. Sci., 13, 1531–1545.
Charaniya, A. P., Manduchi, R. and Lodha,S.K., 2004,“Supervised Parametric Classification of Aerial LiDAR Data”, Computer Vision and Pattern Recognition Workshop, 2004.
Jensen, J.-R., 2005, Introductory Digital Image Processing: A Remote Sensing Perspective, New Jersey: PEARSON Prentice Hall.
Jutzi, B. and Stilla, U., 2006, “Range determination with waveform recordinglaser systems using a Wiener Filter”, ISPRS Journal of Photogrammetry & Remote Sensing, 61: 95-107.
Lin, Y. C., 2009, Digital Terrain Modelling from Small-footprint, Full-Waveform Airborne Laser Scanning Data, Doctoral dissertation, School of Civil Engineering and Geosciences, Newcastle University, UK.
Lin, Y. C. and Mills, J. P., and Smith-Voysey, S., 2010, “Rigorous pulse detection from full-waveform airborne laser scanning data”, International Journal of Remote Sensing, 31(5):1303-1324.
Maas, H. G. and Vosselman, G., 1999, “Two algorithms for extracting building models from raw laser altimetry data”, ISPRS Journal of Photogrammetry & Remote Sensing, 54:153-163.
Mallet, C., Bretar, F., and Soergel, U., 2008, “Analysis of full-waveform lidar data for classification of urban areas”: Photogrammetrie Fernerkundung Geoinformation, v. 5, p. 337-349.
Mallet, C. and Bretar, F., 2009, “Full-waveform topographic lidar: State-of-the-art” : ISPRS Journal of Photogrammetry and Remote Sensing, 64(1): 1-16.

Mallet, C., Lafarge, F., Bretar, F., Roux, M., Soergel, U., and Heipke, C., 2009, “A Stochastic Approach for Modelling Airborne LiDAR Waveforms”, Laserscanning09, Volume XXXVIII, Paris, France, p.201~206.
Mallet, C., Bretar, F., Roux, M., Soergel, U., and Heipke, C., 2011,“Relevance assessment of full-waveform lidar data for urban area classification”, ISPRS Journal of Photogrammetry and Remote Sensing 66(2011)S71-84.
Mhangara, P., and Odindi, J., 2013, “Potential of texture-based classification in urban landscapes using multispectral aerial photos”: South African Journal of Science, v 109(3/4).
Molnar, B., Laky, S., Toth, C., 2011, “Using Full Waveform Data in Urban Area”, International Archives of Photogrammetry, Remote Sensing and Spatial Information Science 38.
Reitberger, J., Krzystek, P., and Stilla, U., 2007, “Combined tree segmentation and stem detection using full waveform lidar data.”, International Archives of Photogrammetry, Remote Sensing and Spatial Information Science, v.36, p.332-337.
Wagner, W., Ullrich, A., Melzer, T., Briese, C. and Kraus, K., 2004. “From single-pulse to full-waveform airborne laser scanners: potential and practical challenge”. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 35(B3): 201-206.
Wagner, W., Ullrich, A., Ducic, V., Melzer, T., and Studnicka, N., 2006. “Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laser scanner”, ISPRS Journal of Photogrammetry & Remote Sensing , 60(2006)100-112.
Wagner, W., Hollaus, M., Briese, C. and Ducic, V., 2008, “3D vegetation mapping using smallfootprint full-waveform airborne laser scanners”, International Journal of Remote Sensing, 29(5):1433-1452.
Wagner, W., Hyyppä, J ., Ullrich, A., Lehner, H., Briese, C. and Kaasalainen, S., 2008, “Radiometric calibration of full-waveform small-footprint airborne laser scanners.” International Archives of Photogrammetry, Remote Sensing and Spatial Information Science, v.37.
Wang, C. K., 2012, “Exploring Weak and Overlapped Returns of a LiDAR Waveform with a Wavelet-Based Echo Detector.”, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXXIX-B7, 2012.

三、 網頁部分
Riegl, 2012a. Long Range Airborne Laser Scanner for Full-Waveform analysis LMS-Q680i.http://www.riegl.com/uploads/tx_pxpriegldownloads/10_DataSheet_LMS-Q680i_28-09-2012.pdf (Date visited:11 May.2013)
Riegl, 2012b. Full-Waveform Analysis Software RiPROCESS.http://www.riegl.com/uploads/tx_pxpriegldownloads/11_Datasheet_RiPROCESS_22-09-2010.pdf (Date visited:11 May.2013)
描述 碩士
國立政治大學
地政研究所
100257030
101
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0100257030
資料類型 thesis
dc.contributor.advisor 林士淵zh_TW
dc.contributor.advisor Lin, Shih Yuanen_US
dc.contributor.author (作者) 湯舜閔zh_TW
dc.contributor.author (作者) Tang, Shun Minen_US
dc.creator (作者) 湯舜閔zh_TW
dc.creator (作者) Tang, Shun Minen_US
dc.date (日期) 2012en_US
dc.date.accessioned 2-九月-2013 17:09:46 (UTC+8)-
dc.date.available 2-九月-2013 17:09:46 (UTC+8)-
dc.date.issued (上傳時間) 2-九月-2013 17:09:46 (UTC+8)-
dc.identifier (其他 識別碼) G0100257030en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/59502-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 地政研究所zh_TW
dc.description (描述) 100257030zh_TW
dc.description (描述) 101zh_TW
dc.description.abstract (摘要) 空載雷射掃描為一可快速獲取地面物體三維空間資訊之技術,而新型發展之全波形(Full-Waveform)系統可完整記錄雷射回波訊號之波形,透過波形偵測與波形擬合等資料前處理,可得到代表地物獨特反射特性的波形參數資料,包括振幅值(Amplitude)、波形寬(Pulse-width)與後續計算之散射截面積係數(Backscatter cross-section coefficient)。
得到各點位之波形資料後,將以波形資料為主進行位於山區之實驗區地物分類,並將使用由實驗區航照影像提供之RGB波段光譜資料計算之綠度指數(Greenness)與計算影像灰階統計值之紋理參數如均質度(Homogeneity)、熵值(Entropy)與R波段平均值(Mean)等參數輔助分類。分類進行之前,透過抽樣實驗區候選地類包括樹林、草地、道路與樹種建物,並以貝氏定理(Bayes Theorem)分析計算不同地物類別在各分類參數區間內的貝氏機率,接著以多項式函數擬合各地類在不同參數之貝氏機率曲線,並以計算反曲點之方式自動化決定該分類參數之門檻值區間。
分類成果顯示,全波形系統提供之波形資料對於受上層植物遮蔽與陰影區之植物點與道路點之分類有顯著之成果,且透過物體對於波形資料之反射特性不同,具備應用於區別不同建築材質類別之潛力。
zh_TW
dc.description.abstract (摘要) Airborne Laser Scanning is a technique capable of acquiring 3D information of land objects. The latest full-waveform system is further improved with the ability of recording complete waveform of reflected laser signal. After the preprocessing procedures such as pulse detection and pulse fitting, the waveform information including amplitude, pulse width and backscatter cross-section were derived. Such information was valuable as they represented unique properties of land objects.
In this study, waveform information of all scanned points were utilized to classify land cover in the test area located in mountain area. Additionally, the Greenness value as well as the texture parameters such as Homogeneity, Entropy and Mean of R band calculated from the ortho-image were used for classification. We aimed to classify the point cloud into vegetation, road and building categories. The Bayes Theorem was used to determine the threshold range of each parameters for classification. As a result, the waveform information were useful for classifying road points covered by upper vegetation points and also vegetation and road points located in shadow area. Moreover, through the analysis of reflective properties of different object using waveform parameters, it was of potential to be applied to distinguish material of buildings.
en_US
dc.description.tableofcontents 摘要.............................................I

Abstract........................................II

目錄...........................................III

圖目錄..........................................IV

表目錄........................................VIII

第一章 緒論...................................1
第一節 研究動機.............................1
第二節 研究目的.............................3
第三節 章節架構.............................4

第二章 文獻回顧與理論基礎.....................5
第一節 全波形空載雷射掃描...................5
第二節 波形資料之特性與應用................10
第三節 全波形光達點雲分類..................19

第三章 研究方法..............................26
第一節 貝氏定理分析地物之波形資料特性......26
第二節 研究流程............................30

第四章 研究成果..............................34
第一節 研究資料............................34
第二節 分類參數分析........................42
第三節 分類成果............................66
第四節 成果檢核與小結......................90

第五章 討論..................................95
第一節 波形資料使用之優點..................95
第二節 波形資料使用之時機與改進方法.......109

第六章 結論與建議...........................113
第一節 結論...............................113
第二節 建議...............................114

參考文獻.......................................115
zh_TW
dc.format.extent 8509065 bytes-
dc.format.mimetype application/pdf-
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0100257030en_US
dc.subject (關鍵詞) 空載雷射掃描zh_TW
dc.subject (關鍵詞) 全波形zh_TW
dc.subject (關鍵詞) 貝氏定理zh_TW
dc.subject (關鍵詞) 地物分類zh_TW
dc.subject (關鍵詞) Airborne laser scanningen_US
dc.subject (關鍵詞) Full-waveformen_US
dc.subject (關鍵詞) Bayes Theoremen_US
dc.subject (關鍵詞) Land cover classificationen_US
dc.title (題名) 應用全波形空載雷射掃描資料於山區地物分類zh_TW
dc.title (題名) Land cover Classification in Mountain Area Using Full-waveform Airborne Laser Scanned Dataen_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) 一、 中文參考文獻
王淼、湯凱佩、曾義星,2005,「光達資料八分樹結構化於平面特徵萃取」,『航測及遙測學刊』,10(1) :59-70。
林耿帆、邱彥瑋、張智昌、徐百輝,2011,「以物件導向結合影像與光達點雲資料之地物分類」。台灣地理資訊學會年會暨學術研討會。
林光賢、陳天進、劉明郎,2008,『微積分』二版,台北: 華泰文化。
林惠玲、陳正倉,2011,『應用統計學』四版修訂版,台北: 雙葉書廊。
林郁珊,2012,「應用空載全波形光達資料於波形分析與地物分類」。國立交通大學土木工程學系碩士論文:新竹。
邱智遠,2008,「應用混合式分類法融合光達高度資料於都市地物分類之研究」。國立中山大學海洋環境及工程學系碩士論文:高雄。
高玉惠,2004,「小波轉換應用於影像自動判釋崩塌地分析」。國立成功大學地球科學研究所碩士論文:台南。
劉治中、蕭國鑫、饒見有、劉進金、吳哲榮、黃群修,2010,「結合空載LiDAR與彩色航照應用於崩塌地研判」,『航測及遙測學刊』,15(1) : 111-122。
賴志恆,2003,「雷射掃描點雲資料八分樹結構化之研究」。國立成功大學測量工程學系碩士論文:台南。
羅仕東,2011,「整合八分樹結構與適應性網格於光達資料重建室內建物三維模型之研究」。國立中央大學土木工程學系碩士論文:桃園。
行政院農業委員會林務局,1995,「第三次台灣森林資源及土地利用調查」。

二、 外文參考文獻
Alexander, C., Tansey, K., Kaduk, J., Holland, D. and Tate, N,-J, 2010, “Backscatter coefficient as an attribute for the classification of full-waveform airborne laser scanning data in urban areas”, ISPRS Journal of Photogrammetry and Remote Sensing, 2010, 65 (5), pp. 423-432.
Amann, M.-C., Bosch, T., Lescure, M., Myllylä, R. and Rioux, M., 2001. Laser ranging: a critical review of usual techniques for distance measurement. Optical Engineering, 40(1):10-19.
Antonarakis, A.-S., Richards, K.-S. and Brasinton, J., 2008 “Object-based land cover classification using airborne LiDAR”, Remote Sensing of Environment 112(2008) 2988-2998.
Beraldin, J. A., Blais, F. and Lohr, U., 2010, “Laser Scanning Technology”, pp.1-42 in Airborne and terrestrial Laser Scanning, edited by Vosselmen, G. and Maas, H-G., UK: Whittles Publishing.
Bretar, F ., Chauve, A ., Bailly, J. S., Mallet, C. and Jacome, A., 2009, “Terrain surfaces and 3-D landcover classification from full-waveform lidar data”, Hydrol. Earth Syst. Sci., 13, 1531–1545.
Charaniya, A. P., Manduchi, R. and Lodha,S.K., 2004,“Supervised Parametric Classification of Aerial LiDAR Data”, Computer Vision and Pattern Recognition Workshop, 2004.
Jensen, J.-R., 2005, Introductory Digital Image Processing: A Remote Sensing Perspective, New Jersey: PEARSON Prentice Hall.
Jutzi, B. and Stilla, U., 2006, “Range determination with waveform recordinglaser systems using a Wiener Filter”, ISPRS Journal of Photogrammetry & Remote Sensing, 61: 95-107.
Lin, Y. C., 2009, Digital Terrain Modelling from Small-footprint, Full-Waveform Airborne Laser Scanning Data, Doctoral dissertation, School of Civil Engineering and Geosciences, Newcastle University, UK.
Lin, Y. C. and Mills, J. P., and Smith-Voysey, S., 2010, “Rigorous pulse detection from full-waveform airborne laser scanning data”, International Journal of Remote Sensing, 31(5):1303-1324.
Maas, H. G. and Vosselman, G., 1999, “Two algorithms for extracting building models from raw laser altimetry data”, ISPRS Journal of Photogrammetry & Remote Sensing, 54:153-163.
Mallet, C., Bretar, F., and Soergel, U., 2008, “Analysis of full-waveform lidar data for classification of urban areas”: Photogrammetrie Fernerkundung Geoinformation, v. 5, p. 337-349.
Mallet, C. and Bretar, F., 2009, “Full-waveform topographic lidar: State-of-the-art” : ISPRS Journal of Photogrammetry and Remote Sensing, 64(1): 1-16.

Mallet, C., Lafarge, F., Bretar, F., Roux, M., Soergel, U., and Heipke, C., 2009, “A Stochastic Approach for Modelling Airborne LiDAR Waveforms”, Laserscanning09, Volume XXXVIII, Paris, France, p.201~206.
Mallet, C., Bretar, F., Roux, M., Soergel, U., and Heipke, C., 2011,“Relevance assessment of full-waveform lidar data for urban area classification”, ISPRS Journal of Photogrammetry and Remote Sensing 66(2011)S71-84.
Mhangara, P., and Odindi, J., 2013, “Potential of texture-based classification in urban landscapes using multispectral aerial photos”: South African Journal of Science, v 109(3/4).
Molnar, B., Laky, S., Toth, C., 2011, “Using Full Waveform Data in Urban Area”, International Archives of Photogrammetry, Remote Sensing and Spatial Information Science 38.
Reitberger, J., Krzystek, P., and Stilla, U., 2007, “Combined tree segmentation and stem detection using full waveform lidar data.”, International Archives of Photogrammetry, Remote Sensing and Spatial Information Science, v.36, p.332-337.
Wagner, W., Ullrich, A., Melzer, T., Briese, C. and Kraus, K., 2004. “From single-pulse to full-waveform airborne laser scanners: potential and practical challenge”. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 35(B3): 201-206.
Wagner, W., Ullrich, A., Ducic, V., Melzer, T., and Studnicka, N., 2006. “Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laser scanner”, ISPRS Journal of Photogrammetry & Remote Sensing , 60(2006)100-112.
Wagner, W., Hollaus, M., Briese, C. and Ducic, V., 2008, “3D vegetation mapping using smallfootprint full-waveform airborne laser scanners”, International Journal of Remote Sensing, 29(5):1433-1452.
Wagner, W., Hyyppä, J ., Ullrich, A., Lehner, H., Briese, C. and Kaasalainen, S., 2008, “Radiometric calibration of full-waveform small-footprint airborne laser scanners.” International Archives of Photogrammetry, Remote Sensing and Spatial Information Science, v.37.
Wang, C. K., 2012, “Exploring Weak and Overlapped Returns of a LiDAR Waveform with a Wavelet-Based Echo Detector.”, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXXIX-B7, 2012.

三、 網頁部分
Riegl, 2012a. Long Range Airborne Laser Scanner for Full-Waveform analysis LMS-Q680i.http://www.riegl.com/uploads/tx_pxpriegldownloads/10_DataSheet_LMS-Q680i_28-09-2012.pdf (Date visited:11 May.2013)
Riegl, 2012b. Full-Waveform Analysis Software RiPROCESS.http://www.riegl.com/uploads/tx_pxpriegldownloads/11_Datasheet_RiPROCESS_22-09-2010.pdf (Date visited:11 May.2013)
zh_TW