學術產出-學位論文
文章檢視/開啟
書目匯出
-
題名 鈷/鉑垂直磁化多層膜中結構對磁耦合及電性的影響
Influence of structure on magnetic coupling and electric properties in cobalt/platinum multilayer with spontaneously perpendicular-magnetization作者 曾嘉裕
Tseng, Chia Yu貢獻者 李尚凡
Lee, Shang Fan
曾嘉裕
Tseng, Chia Yu關鍵詞 垂直異向性
垂直磁化
鈷/鉑多層膜
Perpendicular anisotropy
Perpendicular-magnetization
Co/Pt日期 2010 上傳時間 4-九月-2013 15:28:04 (UTC+8) 摘要 本論文主要在研究多層膜之垂直異向性結構組成及其介面特質,本實驗多層膜選取的材料為鐵磁性的鈷(Co)以及貴重金屬的鉑(Pt),並利用濺鍍(Sputtering)系統來製作(鈷/鉑)多層膜樣品,最初的實驗為尋找(鈷/鉑)多層膜結構組成最佳垂直易性發生之條件,所以分別變化鐵磁層鈷之厚度、一般金屬層鉑之厚度、(鈷/鉑)雙層層數及緩衝buffer layer層鉑之厚度,並利用震動樣品磁度儀(VSM)及超導量子干涉儀(SQUIDE)分別量測垂直及平行磁場方向之磁化強度M對磁場field H的關係,再由M-H圖進行判別其垂直異向性的程度。 在最初的實驗部分可了解如何得到最佳(鈷/鉑)垂直異向性多層膜之結構,並從中可得不同緩衝層鉑之厚度、(鈷/鉑)雙層層數及雙層內鉑之厚度的矯頑場有一趨勢存在,於第二部分的實驗即利用這些矯頑場之趨勢來製作一系列產生巨磁效應之三層膜結構,其中的鐵磁層由(鈷/鉑)垂直異向性多層膜取代,並對此結構做一系列量測,利用震動樣品磁度儀(VSM)量測其磁化強度對磁場的關係、利用LR700系統及物理低溫量測系統(PPMS)量測其異常Hall effect霍爾效應(EHE)現象和電阻對磁場的關係,再將這一系列的量測結果分析其中被一般金屬層鉑所隔開的上下(鈷/鉑)垂直異向性多層膜之間耦合程度。
The topic of this thesis is about the property of the interface and structure in the multilayers with perpendicular anisotropy. The materials of this multilayers are ferromagnetic cobalt and platinum. We use sputtering system to fabricate cobalt/platinum multilayer with various thicknesses. The initial experiment is to search for the optimum condition that develop cobalt/platinum multilayer with perpendicular anisotropy. Then, the influenceof the buffer layer of platinum is studied. We use Vibrating sample magnetometer (VSM) and superconducting quantum interference device (SQUID) magnetometer to measure the magnetization vs. magnetic field relation by applied magnetic fields in both out of plane and in plane directions to distinguishe the degree of perpendicular anisotropy from the M-H figures.From the initial experiments we can understand how to get the optimum structure of cobalt/platinum perpendicular anisotrpy multilayer. There is a tendency exists in the coercivity depending on different thicknesses of the ferromagnetic layer cobalt, the normal noble platinum, the number of bilayers of cobalt/platinum, and the buffer layer of platinum. In the second part of this experiment we used the difference of coercivities to fabricate a series of trilayers structures that produce giant magnetoresistance effect. The individual ferromagnetic layer was cobalt/platinum perpendicular anisotropy multilayer. The structures was measured by VSM to study magnetization vs. field relation. A LR700 resistance bridge and a physical properties measurement system (PPMS) were used to measure the Anomalous Hall Effect (AHE) and resistant vs. field relation.參考文獻 [1] IEEE Trans. Magn. MAG-7, 150 (1971). [2] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen van Dau, F. Petroff, P. Eitenne, G. Creuzet, A. Friederich, and J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988).[3] G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn, Phys. Rev. B 39, 4828 (1989).[4] S. S. P. Parkin, Phys. Rev. Lett. 67, 3598 (1991).[5] S. S. P. Parkin, N. More and K. P. Roche, Phys. Rev. Lett. 64, 2304 (1990).[6] J. S. Moodera, L. R. Kinder, T. M. Wong and R. Meservey, Phys. Rev. Lett. 74, 3273 (1995).[7] Yiming Huai, Mahendra Pakala, Zhitao Diao, and Yunfei Ding, Appl. Phys. Lett. 87, 222510 (2005).[8] Hideaki Fukuzawa, Hiromi Yuasa, Susumu Hashimoto, Hitoshi Iwasaki, and Yoichiro Tanaka, Appl. Phys. Lett. 87, 082507 (2005).[9] Chunghee Nam, Ki-Su Lee, and B. K. Cho, J. Appl. Phys. 97, 10c510 (2005).[10] Xilin Peng, Haiwen Xi, Eric Granstrom, and Song Xue, Phys. Rev. B 72, 052403 (2005).[11] Naoki Nishimura, Tadahiko Hirai, Akio Koganei, Takashi Ikeda, Kazuhisa Okano, Yoshinobu Sekiguchi, and Yoshiyuki Osada., J. Appl. Phys. 97, 5246 (2002).[12] Néel, J. Phys. Radium 15, 225 (1954).[13] U. Gradmann and J. Mueller, Phys. Status. Solidi. (B) 27, 313 (1968).[14] P. F. Carcia, A. D. Meinhaldt, and A. Suna, Appl. Phys. Lett. 47, 178 (1985).[15] P. F. Carcia, J. Appl. Phys. 63, 5070 (1988).[16] S. Mangin, D. Ravelosona, J. A. Katine, M. J. Carey, B. D Terris and Eric E. Fullerton, Nature Materials 5, 210 (2006).[17] B. D. Cullity,Introduction to magnetic materials.[18] William D. Callister, Materials science and engineering an introduction. [19] S. Ferrer, J. Alvarez, E. Lundgren, X. Torrelles, P. Fajardo, and F. Boscherini, Phys. Rev. B 56, 9848 (1997).[20] D. Weller, J. Stöhr, R. Nakajima , A. Carl, M. G. Samant, C. Chappert, R. Mégy, P. Beauvillain, P. Veillet, and G. A. Held, Phys. Rev. Lett. 75, 3752 (1995).[21] C. Chappert and P. Bruno, J. Appl. Phys. 64, 5736 (1988).[22] S. Tsunashima, and K. Nagase, IEEE Trans. Magn. 25, 3761 (1989).[23] W. B. Zeper, F. J. A. M. Greidanus, P. F. Carcia, and C. R. Fincher, J. Appl. Phys. 65, 4971 (1989).[24] K. Umeda, Y. Fujiwara, T. Matsumoto, K. Nakagawa, A. Itoh, J. Magn. Mater. 156, 75 (1996).[25] 鄭凱文,博士論文集,(2011).[26] Y. Yafet, Phys. Rev. B 36, 3948 (1987).[27] R. Coehoorn, Phys. Rev. B 44, 9331(1991).[28] P. Bruno and C. Chappert, Phys. Rev. Lett. 67, 1602 (1991).[29] S. S. P. Parkin, Phys. Rev. Lett. 66, 2152 (1991).[30] J. Nogués, Ivan K. Schuller, J. Magn. Mater. 192, 203 (1999).[31] 邱昱哲,碩士論文集,(2008).[32] Z. Zhang and P. E. Wigen, J. Appl. Phys. 69, 5649 (1991).[33] Olav Hellwiga, Andreas Bergera, Jeffrey B. Kortrightb, Eric E. Fullerton, J. Magn. Mater. 319 13 (2007).[34] J. W. Knepper and F. Y. Yang, Phys. Rev. B 71, 224403 (2005). 描述 碩士
國立政治大學
應用物理研究所
98755007
99資料來源 http://thesis.lib.nccu.edu.tw/record/#G0098755007 資料類型 thesis dc.contributor.advisor 李尚凡 zh_TW dc.contributor.advisor Lee, Shang Fan en_US dc.contributor.author (作者) 曾嘉裕 zh_TW dc.contributor.author (作者) Tseng, Chia Yu en_US dc.creator (作者) 曾嘉裕 zh_TW dc.creator (作者) Tseng, Chia Yu en_US dc.date (日期) 2010 en_US dc.date.accessioned 4-九月-2013 15:28:04 (UTC+8) - dc.date.available 4-九月-2013 15:28:04 (UTC+8) - dc.date.issued (上傳時間) 4-九月-2013 15:28:04 (UTC+8) - dc.identifier (其他 識別碼) G0098755007 en_US dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/60095 - dc.description (描述) 碩士 zh_TW dc.description (描述) 國立政治大學 zh_TW dc.description (描述) 應用物理研究所 zh_TW dc.description (描述) 98755007 zh_TW dc.description (描述) 99 zh_TW dc.description.abstract (摘要) 本論文主要在研究多層膜之垂直異向性結構組成及其介面特質,本實驗多層膜選取的材料為鐵磁性的鈷(Co)以及貴重金屬的鉑(Pt),並利用濺鍍(Sputtering)系統來製作(鈷/鉑)多層膜樣品,最初的實驗為尋找(鈷/鉑)多層膜結構組成最佳垂直易性發生之條件,所以分別變化鐵磁層鈷之厚度、一般金屬層鉑之厚度、(鈷/鉑)雙層層數及緩衝buffer layer層鉑之厚度,並利用震動樣品磁度儀(VSM)及超導量子干涉儀(SQUIDE)分別量測垂直及平行磁場方向之磁化強度M對磁場field H的關係,再由M-H圖進行判別其垂直異向性的程度。 在最初的實驗部分可了解如何得到最佳(鈷/鉑)垂直異向性多層膜之結構,並從中可得不同緩衝層鉑之厚度、(鈷/鉑)雙層層數及雙層內鉑之厚度的矯頑場有一趨勢存在,於第二部分的實驗即利用這些矯頑場之趨勢來製作一系列產生巨磁效應之三層膜結構,其中的鐵磁層由(鈷/鉑)垂直異向性多層膜取代,並對此結構做一系列量測,利用震動樣品磁度儀(VSM)量測其磁化強度對磁場的關係、利用LR700系統及物理低溫量測系統(PPMS)量測其異常Hall effect霍爾效應(EHE)現象和電阻對磁場的關係,再將這一系列的量測結果分析其中被一般金屬層鉑所隔開的上下(鈷/鉑)垂直異向性多層膜之間耦合程度。 zh_TW dc.description.abstract (摘要) The topic of this thesis is about the property of the interface and structure in the multilayers with perpendicular anisotropy. The materials of this multilayers are ferromagnetic cobalt and platinum. We use sputtering system to fabricate cobalt/platinum multilayer with various thicknesses. The initial experiment is to search for the optimum condition that develop cobalt/platinum multilayer with perpendicular anisotropy. Then, the influenceof the buffer layer of platinum is studied. We use Vibrating sample magnetometer (VSM) and superconducting quantum interference device (SQUID) magnetometer to measure the magnetization vs. magnetic field relation by applied magnetic fields in both out of plane and in plane directions to distinguishe the degree of perpendicular anisotropy from the M-H figures.From the initial experiments we can understand how to get the optimum structure of cobalt/platinum perpendicular anisotrpy multilayer. There is a tendency exists in the coercivity depending on different thicknesses of the ferromagnetic layer cobalt, the normal noble platinum, the number of bilayers of cobalt/platinum, and the buffer layer of platinum. In the second part of this experiment we used the difference of coercivities to fabricate a series of trilayers structures that produce giant magnetoresistance effect. The individual ferromagnetic layer was cobalt/platinum perpendicular anisotropy multilayer. The structures was measured by VSM to study magnetization vs. field relation. A LR700 resistance bridge and a physical properties measurement system (PPMS) were used to measure the Anomalous Hall Effect (AHE) and resistant vs. field relation. en_US dc.description.tableofcontents 中文摘要................................................... I英文摘要.................................................. II目錄.......................................................V圖目錄....................................................VI表目錄...................................................XIV第一章 緒論...............................................11-1 實驗動機................................................11-2 垂直異向性發展..........................................4第二章 原理介紹.............................................72-1 磁性物質簡介............................................72-2 磁異向性簡介...........................................182-3 垂直異向性機制.........................................292-4 巨磁阻效應.............................................32第三章 儀器設備與實驗原理....................................393-1 薄膜形成物理機制........................................393-2 濺鍍原理與技術.........................................413-3 濺鍍製程設備系統........................................473-4 膜後粗鍍儀(Alpha step profilometer)....................493-5 震動樣品磁度儀(Vibrating sample magnetometer)..........503-6 四點量測法.............................................51第四章 實驗數據與分析.......................................534-1 Bilayer中Co厚度變化對(Co/Pt)多層膜之垂直異向性結構影響....554-2 Bilayer中Pt厚度變化對(Co/Pt)多層膜之垂直異向性結構影響....694-3 Bilayer(Co/Pt)層數變化對(Co/Pt)多層膜之垂直異向性結構影響... ......................................................804-4 Buffer layer Pt厚度變化對(Co/Pt)多層膜之垂直異向性結構影響.. ......................................................964-5 Spacer Pt厚度變化對(Co/Pt)多層膜之垂直式巨磁阻結構影響...... .....................................................1084-6 Bilayer(Co/Pt)層數變化對(Co/Pt)多層膜之垂直式巨磁阻結構影響..........................................................1154-7 Bilayer(Co/Pt)中之Pt厚度對(Co/Pt)多層膜之垂直式巨磁阻結構影 響..................................................1204-8 Buffer layer Pt厚度對(Co/Pt)多層膜之垂直式巨磁阻結構影響.... ....................................................123第五章 討論...............................................132參考文獻:................................................134 zh_TW dc.format.extent 10360090 bytes - dc.format.mimetype application/pdf - dc.language.iso en_US - dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0098755007 en_US dc.subject (關鍵詞) 垂直異向性 zh_TW dc.subject (關鍵詞) 垂直磁化 zh_TW dc.subject (關鍵詞) 鈷/鉑多層膜 zh_TW dc.subject (關鍵詞) Perpendicular anisotropy en_US dc.subject (關鍵詞) Perpendicular-magnetization en_US dc.subject (關鍵詞) Co/Pt en_US dc.title (題名) 鈷/鉑垂直磁化多層膜中結構對磁耦合及電性的影響 zh_TW dc.title (題名) Influence of structure on magnetic coupling and electric properties in cobalt/platinum multilayer with spontaneously perpendicular-magnetization en_US dc.type (資料類型) thesis en dc.relation.reference (參考文獻) [1] IEEE Trans. Magn. MAG-7, 150 (1971). [2] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen van Dau, F. Petroff, P. Eitenne, G. Creuzet, A. Friederich, and J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988).[3] G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn, Phys. Rev. B 39, 4828 (1989).[4] S. S. P. Parkin, Phys. Rev. Lett. 67, 3598 (1991).[5] S. S. P. Parkin, N. More and K. P. Roche, Phys. Rev. Lett. 64, 2304 (1990).[6] J. S. Moodera, L. R. Kinder, T. M. Wong and R. Meservey, Phys. Rev. Lett. 74, 3273 (1995).[7] Yiming Huai, Mahendra Pakala, Zhitao Diao, and Yunfei Ding, Appl. Phys. Lett. 87, 222510 (2005).[8] Hideaki Fukuzawa, Hiromi Yuasa, Susumu Hashimoto, Hitoshi Iwasaki, and Yoichiro Tanaka, Appl. Phys. Lett. 87, 082507 (2005).[9] Chunghee Nam, Ki-Su Lee, and B. K. Cho, J. Appl. Phys. 97, 10c510 (2005).[10] Xilin Peng, Haiwen Xi, Eric Granstrom, and Song Xue, Phys. Rev. B 72, 052403 (2005).[11] Naoki Nishimura, Tadahiko Hirai, Akio Koganei, Takashi Ikeda, Kazuhisa Okano, Yoshinobu Sekiguchi, and Yoshiyuki Osada., J. Appl. Phys. 97, 5246 (2002).[12] Néel, J. Phys. Radium 15, 225 (1954).[13] U. Gradmann and J. Mueller, Phys. Status. Solidi. (B) 27, 313 (1968).[14] P. F. Carcia, A. D. Meinhaldt, and A. Suna, Appl. Phys. Lett. 47, 178 (1985).[15] P. F. Carcia, J. Appl. Phys. 63, 5070 (1988).[16] S. Mangin, D. Ravelosona, J. A. Katine, M. J. Carey, B. D Terris and Eric E. Fullerton, Nature Materials 5, 210 (2006).[17] B. D. Cullity,Introduction to magnetic materials.[18] William D. Callister, Materials science and engineering an introduction. [19] S. Ferrer, J. Alvarez, E. Lundgren, X. Torrelles, P. Fajardo, and F. Boscherini, Phys. Rev. B 56, 9848 (1997).[20] D. Weller, J. Stöhr, R. Nakajima , A. Carl, M. G. Samant, C. Chappert, R. Mégy, P. Beauvillain, P. Veillet, and G. A. Held, Phys. Rev. Lett. 75, 3752 (1995).[21] C. Chappert and P. Bruno, J. Appl. Phys. 64, 5736 (1988).[22] S. Tsunashima, and K. Nagase, IEEE Trans. Magn. 25, 3761 (1989).[23] W. B. Zeper, F. J. A. M. Greidanus, P. F. Carcia, and C. R. Fincher, J. Appl. Phys. 65, 4971 (1989).[24] K. Umeda, Y. Fujiwara, T. Matsumoto, K. Nakagawa, A. Itoh, J. Magn. Mater. 156, 75 (1996).[25] 鄭凱文,博士論文集,(2011).[26] Y. Yafet, Phys. Rev. B 36, 3948 (1987).[27] R. Coehoorn, Phys. Rev. B 44, 9331(1991).[28] P. Bruno and C. Chappert, Phys. Rev. Lett. 67, 1602 (1991).[29] S. S. P. Parkin, Phys. Rev. Lett. 66, 2152 (1991).[30] J. Nogués, Ivan K. Schuller, J. Magn. Mater. 192, 203 (1999).[31] 邱昱哲,碩士論文集,(2008).[32] Z. Zhang and P. E. Wigen, J. Appl. Phys. 69, 5649 (1991).[33] Olav Hellwiga, Andreas Bergera, Jeffrey B. Kortrightb, Eric E. Fullerton, J. Magn. Mater. 319 13 (2007).[34] J. W. Knepper and F. Y. Yang, Phys. Rev. B 71, 224403 (2005). zh_TW