學術產出-學位論文

文章檢視/開啟

書目匯出

Google ScholarTM

政大圖書館

引文資訊

TAIR相關學術產出

題名 在有限的預算下找出影響力最大的代言人組合
Mining a set of agents in social networks for maximal influence with a limited budget
作者 龔偉銘
貢獻者 陳良弼
龔偉銘
關鍵詞 影響力
社群網路
日期 2010
上傳時間 4-九月-2013 17:08:44 (UTC+8)
摘要 近年來,越來越多的社群網站受到人們廣泛的使用,例如:Facebook、Plurk之類的網站都擁有大量的使用者資料。社群網路越來越受到一些研究學者的重視,很多人開始紛紛研究如何有效的運用社群網路上的資料。影響力的傳播是社群網路上一個很重要的課題,如何在社群網路上找到影響力最大的組合是個受到廣泛討論的問題。在本研究中,我們試想一間公司如果要請人來宣傳產品的話,必須支付代言人一些費用,而如何在有限的預算下聘請一些代言人來達到最大的宣傳效果就是我們研究的問題。兩個代言人的影響力總和並不單單只是將兩個代言人的影響力相加而已,因為代言人本身所影響的對象可能會重複,所以必須扣除掉一些被重複影響的人,也增加了問題的困難度。在我們提出的演算法中,可以有效的減少計算的時間並且使找出來的代言人組合所造成的影響力趨近最佳解。
Influence maximization is the problem of finding a small subset of nodes (seed nodes) in a social network that could maximize the spread of influence. In this paper, we given a social network and budget, which people should we choose could maximize the spread of influence with a limit budget. We propose a new algorithm combine cluster algorithm and dynamic programming to solve this problem.
Our experimental results show that our propose algorithm achieves better running time comparing with the CELF algorithm. But CELF algorithm achieve much better influence spread than our propose algorithm. Based on our results, we believe if we can improve the cluster algorithm than we can achieve much better influence spread.
參考文獻 [1] D. Kempe, J. Kleinberg, and E.Tardos. Maximizing the Spread of Influence through a Social Network. In SIGKDD 2003.
[2] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and N. Glance. Cost-effective outbreak detection in networks. In SIGKDD 2007.
[3] W. Chen, Y. Wang, and S. Yang. Efficient influence maximization in social networks. In SIGKDD 2009.
[4] Y. Wang, G. Cong, G. Song, and K. Xie. Community-based Greedy Algorithm for Mining Top-K Influential Nodes in Mobile Social Networks. In SIGKDD 2010.
[5] B. Zhou and J. Pei. Preserving Privacy in Social Networks Against Neighborhood Attacks. In ICDE 2008.
[6] N. Shrivastava, A. Majumder and R. Rastogi. Mining (Social) Network Graphs to Detect Random Link Attacks. In ICDE 2008.
[7] W. Chen, Y. Yuan and L. Zhang. Scalable Influence Maximization in Social Networks under the Linear Threshold Model. In ICDM 2010.
[8] A. Krause, J. Leskovec, C. Guestrin, J. VanBriesen,and C. Faloutsos. Efficient sensor placement optimization for securing large water distribution networks. Water Resources Planning Management 2008.
[9] X. Xu, N. Yuruk, Z. Feng, T. A. J. Schweiger. SCAN: A Structural Clustering Algorithm for Network. In SIGKDD 2007
描述 碩士
國立政治大學
資訊科學學系
98753025
99
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0098753025
資料類型 thesis
dc.contributor.advisor 陳良弼zh_TW
dc.contributor.author (作者) 龔偉銘zh_TW
dc.creator (作者) 龔偉銘zh_TW
dc.date (日期) 2010en_US
dc.date.accessioned 4-九月-2013 17:08:44 (UTC+8)-
dc.date.available 4-九月-2013 17:08:44 (UTC+8)-
dc.date.issued (上傳時間) 4-九月-2013 17:08:44 (UTC+8)-
dc.identifier (其他 識別碼) G0098753025en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/60253-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 資訊科學學系zh_TW
dc.description (描述) 98753025zh_TW
dc.description (描述) 99zh_TW
dc.description.abstract (摘要) 近年來,越來越多的社群網站受到人們廣泛的使用,例如:Facebook、Plurk之類的網站都擁有大量的使用者資料。社群網路越來越受到一些研究學者的重視,很多人開始紛紛研究如何有效的運用社群網路上的資料。影響力的傳播是社群網路上一個很重要的課題,如何在社群網路上找到影響力最大的組合是個受到廣泛討論的問題。在本研究中,我們試想一間公司如果要請人來宣傳產品的話,必須支付代言人一些費用,而如何在有限的預算下聘請一些代言人來達到最大的宣傳效果就是我們研究的問題。兩個代言人的影響力總和並不單單只是將兩個代言人的影響力相加而已,因為代言人本身所影響的對象可能會重複,所以必須扣除掉一些被重複影響的人,也增加了問題的困難度。在我們提出的演算法中,可以有效的減少計算的時間並且使找出來的代言人組合所造成的影響力趨近最佳解。zh_TW
dc.description.abstract (摘要) Influence maximization is the problem of finding a small subset of nodes (seed nodes) in a social network that could maximize the spread of influence. In this paper, we given a social network and budget, which people should we choose could maximize the spread of influence with a limit budget. We propose a new algorithm combine cluster algorithm and dynamic programming to solve this problem.
Our experimental results show that our propose algorithm achieves better running time comparing with the CELF algorithm. But CELF algorithm achieve much better influence spread than our propose algorithm. Based on our results, we believe if we can improve the cluster algorithm than we can achieve much better influence spread.
en_US
dc.description.tableofcontents 第一章 導論及研究動機 7
第二章 相關研究 9
2.1 影響力期望值的相關研究 9
2.2 社群網路的相關研究 10
第三章 方法描述和實作 15
3.1分群演算法(Cluster Algorithm) 16
3.1.1 分群的概念 17
3.1.2 分群演算法 19
3.2動態規劃法(Dynamic programming) 25
3.3結合分群和動態規劃法查詢結果 27
第四章 實驗方法與驗證 29
4.1實驗設計 30
4.1.1分群演算法實驗 32
4.1.2影響力與計算時間比較實驗 33
4.2 實驗結果 35
第五章 結論 40
參考文獻 41
zh_TW
dc.format.extent 894836 bytes-
dc.format.mimetype application/pdf-
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0098753025en_US
dc.subject (關鍵詞) 影響力zh_TW
dc.subject (關鍵詞) 社群網路zh_TW
dc.title (題名) 在有限的預算下找出影響力最大的代言人組合zh_TW
dc.title (題名) Mining a set of agents in social networks for maximal influence with a limited budgeten_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) [1] D. Kempe, J. Kleinberg, and E.Tardos. Maximizing the Spread of Influence through a Social Network. In SIGKDD 2003.
[2] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and N. Glance. Cost-effective outbreak detection in networks. In SIGKDD 2007.
[3] W. Chen, Y. Wang, and S. Yang. Efficient influence maximization in social networks. In SIGKDD 2009.
[4] Y. Wang, G. Cong, G. Song, and K. Xie. Community-based Greedy Algorithm for Mining Top-K Influential Nodes in Mobile Social Networks. In SIGKDD 2010.
[5] B. Zhou and J. Pei. Preserving Privacy in Social Networks Against Neighborhood Attacks. In ICDE 2008.
[6] N. Shrivastava, A. Majumder and R. Rastogi. Mining (Social) Network Graphs to Detect Random Link Attacks. In ICDE 2008.
[7] W. Chen, Y. Yuan and L. Zhang. Scalable Influence Maximization in Social Networks under the Linear Threshold Model. In ICDM 2010.
[8] A. Krause, J. Leskovec, C. Guestrin, J. VanBriesen,and C. Faloutsos. Efficient sensor placement optimization for securing large water distribution networks. Water Resources Planning Management 2008.
[9] X. Xu, N. Yuruk, Z. Feng, T. A. J. Schweiger. SCAN: A Structural Clustering Algorithm for Network. In SIGKDD 2007
zh_TW