學術產出-學位論文

文章檢視/開啟

書目匯出

Google ScholarTM

政大圖書館

引文資訊

TAIR相關學術產出

題名 General Adaptive Penalized Least Squares 模型選取方法之模擬與其他方法之比較
The Simulation of Model Selection Method for General Adaptive Penalized Least Squares and Comparison with Other Methods
作者 陳柏錞
貢獻者 黃子銘
Huang, Tzee Ming
陳柏錞
關鍵詞 B-Spline
BIC
無母數方法
分段多項式
節點選取
B-spline
generalized adaptive penalized least squares
BIC
nonparametric method
piecewise polynomial
knot selection
日期 2013
上傳時間 29-七月-2014 16:03:19 (UTC+8)
摘要 在迴歸分析中,若變數間具有非線性 (nonlinear) 的關係時,B-Spline線性迴歸是以無母數的方式建立模型。B-Spline函數為具有節點(knots)的分段多項式,選取合適節點的位置對B-Spline函數的估計有重要的影響,在希望得到B-Spline較好的估計量的同時,我們也想要只用少數的節點就達成想要的成效,於是Huang (2013) 提出了一種選擇節點的方式APLS (Adaptive penalized least squares),在本文中,我們以此方法進行一些更一般化的設定,並在不同的設定之下,判斷是否有較好的估計效果,且已修正後的方法與基於BIC (Bayesian information criterion)的節點估計方式進行比較,在本文中我們將一般化設定的APLS法稱為GAPLS,並且經由模擬結果我們發現此兩種以B-Spline進行迴歸函數近似的方法其近似效果都很不錯,只是節點的個數略有不同,所以若是對節點選取的個數有嚴格要求要取較少的節點的話,我們建議使用基於BIC的節點估計方式,除此之外GAPLS法也是不錯的選擇。
In regression analysis, if the relationship between the response variable and the explanatory variables is nonlinear, B-splines can be used to model the nonlinear relationship. Knot selection is crucial in B-spline regression. Huang (2013) propose a method for adaptive estimation, where knots are selected based on penalized least squares. This method is abbreviated as APLS (adaptive penalized least squares) in this thesis. In this thesis, a more general version of APLS is proposed, which is abbreviated as GAPLS (generalized APLS). Simulation studies are carried out to compare the estimation performance between GAPLS and a knot selection method based on BIC (Bayesian information criterion). The simulation results show that both methods perform well and fewer knots are selected using the BIC approach than using GAPLS.
參考文獻 [1] Tzee-Ming Huang . An adaptive knot selection method for regression splines via penalized minimum contrast estimation. National ChengChi University. Department. of Statistics. 2013.

[2] Huang, Tzee-Ming. "Convergence rates for posterior distributions and adaptive
estimation." The Annals of Statistics 32.4 (2004): 1556-1593.

[3] Hardle, Wolfgang. Applied nonparametric regression. Vol. 27. Cambridge:
Cambridge university press, 1990.

[4] Eubank, Randall L. Nonparametric regression and spline smoothing. CRC press,
1999.

[5] 何昕燁,一種基於 BIC 的 B-Spline 節點估計方式. 2012.

[6] T.A. Springer ,〈線性代數群〉 張瑞吉譯,1987.
描述 碩士
國立政治大學
統計研究所
101354028
102
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0101354028
資料類型 thesis
dc.contributor.advisor 黃子銘zh_TW
dc.contributor.advisor Huang, Tzee Mingen_US
dc.contributor.author (作者) 陳柏錞zh_TW
dc.creator (作者) 陳柏錞zh_TW
dc.date (日期) 2013en_US
dc.date.accessioned 29-七月-2014 16:03:19 (UTC+8)-
dc.date.available 29-七月-2014 16:03:19 (UTC+8)-
dc.date.issued (上傳時間) 29-七月-2014 16:03:19 (UTC+8)-
dc.identifier (其他 識別碼) G0101354028en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/67860-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 統計研究所zh_TW
dc.description (描述) 101354028zh_TW
dc.description (描述) 102zh_TW
dc.description.abstract (摘要) 在迴歸分析中,若變數間具有非線性 (nonlinear) 的關係時,B-Spline線性迴歸是以無母數的方式建立模型。B-Spline函數為具有節點(knots)的分段多項式,選取合適節點的位置對B-Spline函數的估計有重要的影響,在希望得到B-Spline較好的估計量的同時,我們也想要只用少數的節點就達成想要的成效,於是Huang (2013) 提出了一種選擇節點的方式APLS (Adaptive penalized least squares),在本文中,我們以此方法進行一些更一般化的設定,並在不同的設定之下,判斷是否有較好的估計效果,且已修正後的方法與基於BIC (Bayesian information criterion)的節點估計方式進行比較,在本文中我們將一般化設定的APLS法稱為GAPLS,並且經由模擬結果我們發現此兩種以B-Spline進行迴歸函數近似的方法其近似效果都很不錯,只是節點的個數略有不同,所以若是對節點選取的個數有嚴格要求要取較少的節點的話,我們建議使用基於BIC的節點估計方式,除此之外GAPLS法也是不錯的選擇。zh_TW
dc.description.abstract (摘要) In regression analysis, if the relationship between the response variable and the explanatory variables is nonlinear, B-splines can be used to model the nonlinear relationship. Knot selection is crucial in B-spline regression. Huang (2013) propose a method for adaptive estimation, where knots are selected based on penalized least squares. This method is abbreviated as APLS (adaptive penalized least squares) in this thesis. In this thesis, a more general version of APLS is proposed, which is abbreviated as GAPLS (generalized APLS). Simulation studies are carried out to compare the estimation performance between GAPLS and a knot selection method based on BIC (Bayesian information criterion). The simulation results show that both methods perform well and fewer knots are selected using the BIC approach than using GAPLS.en_US
dc.description.tableofcontents 第一章 緒論 1
第二章 文獻回顧 3

2.1 基於BIC的節點估計方式 3

2.2 APLS 法 6

第三章 研究方法 9

3.1 GAPLS法 9

3.2 實際模擬 11

第四章 模擬與比較 13
4.1 模擬 c1 ,c2 13

4.2 GAPLS法 與BIC法的比較 16

第五章 結論與建議 27
5.1 結論 27

5.2 建議 27

5.3 延伸題目 27
zh_TW
dc.format.extent 1200204 bytes-
dc.format.mimetype application/pdf-
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0101354028en_US
dc.subject (關鍵詞) B-Splinezh_TW
dc.subject (關鍵詞) BICzh_TW
dc.subject (關鍵詞) 無母數方法zh_TW
dc.subject (關鍵詞) 分段多項式zh_TW
dc.subject (關鍵詞) 節點選取zh_TW
dc.subject (關鍵詞) B-splineen_US
dc.subject (關鍵詞) generalized adaptive penalized least squaresen_US
dc.subject (關鍵詞) BICen_US
dc.subject (關鍵詞) nonparametric methoden_US
dc.subject (關鍵詞) piecewise polynomialen_US
dc.subject (關鍵詞) knot selectionen_US
dc.title (題名) General Adaptive Penalized Least Squares 模型選取方法之模擬與其他方法之比較zh_TW
dc.title (題名) The Simulation of Model Selection Method for General Adaptive Penalized Least Squares and Comparison with Other Methodsen_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) [1] Tzee-Ming Huang . An adaptive knot selection method for regression splines via penalized minimum contrast estimation. National ChengChi University. Department. of Statistics. 2013.

[2] Huang, Tzee-Ming. "Convergence rates for posterior distributions and adaptive
estimation." The Annals of Statistics 32.4 (2004): 1556-1593.

[3] Hardle, Wolfgang. Applied nonparametric regression. Vol. 27. Cambridge:
Cambridge university press, 1990.

[4] Eubank, Randall L. Nonparametric regression and spline smoothing. CRC press,
1999.

[5] 何昕燁,一種基於 BIC 的 B-Spline 節點估計方式. 2012.

[6] T.A. Springer ,〈線性代數群〉 張瑞吉譯,1987.
zh_TW