學術產出-學位論文

文章檢視/開啟

書目匯出

Google ScholarTM

政大圖書館

引文資訊

TAIR相關學術產出

題名 簡單加速壽命試驗及型二混合設限之Weibull資料分析
Analysis for Weibull Data under Simple Step-Stress and Type II Hybrid Censoring
作者 陳朝逸
Chen, Chao Yi
貢獻者 陳麗霞
Chen, Li Shya
陳朝逸
Chen, Chao Yi
關鍵詞 加速壽命試驗
型二混合設限
簡單加速試驗
累積暴露模型
Weibull分配
最大概似估計量的漸進信賴區間
基於概似比的漸進信賴區間
拔靴信賴區間
Accelerated life testing
type II hybrid censoring
simple step-stress testing
cumulative exposure model
Weibull distribution
asymptotic confidence interval
likelihood ratio-based confidence interval
bootstrap confidence interval
日期 2013
上傳時間 12-八月-2014 14:02:03 (UTC+8)
摘要 本論文探討的是在簡單加速壽命試驗及型二混合設限下Weibull資料的估計問題。由於實驗單位在兩階段的應力水準不同,在累積暴露模型之假定下,解出最大概似估計值並求得觀察到的訊息矩陣。進而介紹各參數之最大概似估計量的漸進信賴區間、基於概似比的漸進信賴區間,以及三種拔靴信賴區間。在不同的樣本數、應力改變的時間及實驗預定的終止時間之下,利用蒙地卡羅法模擬計算各參數估計量的偏差和均方誤差等指標,以評估其與應力改變的時間及實驗預定終止的時間之關係;再對各參數的各種信賴區間分別計算覆蓋率以評估區間估計之表現。其中,最大概似估計量的漸進信賴區間不但計算時間短且覆蓋率之表現較佳。
In this thesis, the estimation problems for Weibull data under simple step-stress and type II hybrid censoring are considered. Due to different stress level undertaken by those experiment units surviving through the first stage, the maximum likelihood estimators (MLEs) of the parameters and the corresponding observed information matrix are derived under the cumulative exposure model. Then, asymptotic confidence intervals derived from the asymptotic distributions of the MLEs, likelihood ratio-based confidence intervals and three bootstrap confidence intervals are introduced. With different sample sizes, change-points for changing the stress-level, and preplanned stopping times, Monte-Carlo simulations are carried out and the average biases, mean squared errors, and other criterions are computed to discover the relations between these criterions and change-points and preplanned stopping times. Coverage rates for confidence intervals are also computed to evaluate their performances. Finally, the asymptotic confidence interval is recommended due to taking less computation time and achieving better coverage rate than other methods.
參考文獻 1.Balakrishnan, N. and Kundu, D. (2013). Hybrid censoring: models, inferential results and applications. Computational Statistics & Data Analysis, 57(1), 166-209.

2.Balakrishnan, N., Kundu, D. , Ng, H.K.T. and Kannan, N. (2007). Point and interval estimation for a simple step-stress model with Type-II censoring. Journal of Quality Technology, 39(1), 35-47.

3.Balakrishnan, N. and Xie, Q. (2007a). Exact inference for a simple step-stress model with Type-I hybrid censored data from the exponential distribution. Journal of Statistical Planning and Inference, 137(11), 3268-3290.

4.Balakrishnan, N. and Xie, Q. (2007b). Exact inference for a simple step-stress model with Type-II hybrid censored data from the exponential distribution. Journal of Statistical Planning and Inference, 137(8), 2543-2563.

5.Banerjee, A. and Kundu, D. (2008). Inference based on type-II hybrid censored data from a Weibull distribution. IEEE Transactions on Reliability, 57(2), 369-378.

6.Childs, A., Chandrasekar, B., Balakrishnan, N. and Kundu, D. (2003). Exact likelihood inference based on Type-I and Type-II hybrid censored samples from the exponential distribution. Annals of the Institute of Statistical Mathematics, 55(2), 319-330.

7.Epstein, B. (1954). Truncated life tests in the exponential case. The Annals of Mathematical Statistics, 25(3), 555-564.

8.Nelson, W. (1980). Accelerated life testing-step-stress models and data analyses.
IEEE Transactions on Reliability, 29(2), 103-108.

9.Nelson,W.B. (1990). Accelerated Testing, Statistical Models, Test Plans and Data Analysis, Wiley, New York, NY., .

10.Kateri, M. and Balakrishnan, N. (2008). Inference for a simple step-stress model with Type-II censoring, and Weibull distributed lifetimes. IEEE Transactions on Reliability, 57(4), 616-626.

11.Sinha, S. K. (1986). Reliability and life testing. John Wiley & Sons, Inc.

12.Venzon, D. J. and Moolgavkar, S. H. (1988). A method for computing profile-likelihood-based confidence intervals. Applied Statistics, 87-94.

13.Xiong, C. (1998). Inferences on a simple step-stress model with type-II censored exponential data. IEEE Transactions on Reliability, 47(2), 142-146.

14.洪紹媛(2013),韋伯型I混合設限資料之加速壽命試驗的推論,淡江大學數學學
系碩士班碩士論文
描述 碩士
國立政治大學
統計研究所
101354025
102
資料來源 http://thesis.lib.nccu.edu.tw/record/#G1013540251
資料類型 thesis
dc.contributor.advisor 陳麗霞zh_TW
dc.contributor.advisor Chen, Li Shyaen_US
dc.contributor.author (作者) 陳朝逸zh_TW
dc.contributor.author (作者) Chen, Chao Yien_US
dc.creator (作者) 陳朝逸zh_TW
dc.creator (作者) Chen, Chao Yien_US
dc.date (日期) 2013en_US
dc.date.accessioned 12-八月-2014 14:02:03 (UTC+8)-
dc.date.available 12-八月-2014 14:02:03 (UTC+8)-
dc.date.issued (上傳時間) 12-八月-2014 14:02:03 (UTC+8)-
dc.identifier (其他 識別碼) G1013540251en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/68529-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 統計研究所zh_TW
dc.description (描述) 101354025zh_TW
dc.description (描述) 102zh_TW
dc.description.abstract (摘要) 本論文探討的是在簡單加速壽命試驗及型二混合設限下Weibull資料的估計問題。由於實驗單位在兩階段的應力水準不同,在累積暴露模型之假定下,解出最大概似估計值並求得觀察到的訊息矩陣。進而介紹各參數之最大概似估計量的漸進信賴區間、基於概似比的漸進信賴區間,以及三種拔靴信賴區間。在不同的樣本數、應力改變的時間及實驗預定的終止時間之下,利用蒙地卡羅法模擬計算各參數估計量的偏差和均方誤差等指標,以評估其與應力改變的時間及實驗預定終止的時間之關係;再對各參數的各種信賴區間分別計算覆蓋率以評估區間估計之表現。其中,最大概似估計量的漸進信賴區間不但計算時間短且覆蓋率之表現較佳。zh_TW
dc.description.abstract (摘要) In this thesis, the estimation problems for Weibull data under simple step-stress and type II hybrid censoring are considered. Due to different stress level undertaken by those experiment units surviving through the first stage, the maximum likelihood estimators (MLEs) of the parameters and the corresponding observed information matrix are derived under the cumulative exposure model. Then, asymptotic confidence intervals derived from the asymptotic distributions of the MLEs, likelihood ratio-based confidence intervals and three bootstrap confidence intervals are introduced. With different sample sizes, change-points for changing the stress-level, and preplanned stopping times, Monte-Carlo simulations are carried out and the average biases, mean squared errors, and other criterions are computed to discover the relations between these criterions and change-points and preplanned stopping times. Coverage rates for confidence intervals are also computed to evaluate their performances. Finally, the asymptotic confidence interval is recommended due to taking less computation time and achieving better coverage rate than other methods.en_US
dc.description.tableofcontents 第一章 緒論 1
1.1 研究背景、動機與目的 1
1.2 論文結構 2
第二章 文獻探討 3
第三章 模型簡介及估計 6
3.1 模型假設 6
3.2 最大概似估計法 9
3.3 參數的區間估計 11
3.3.1 最大概似估計量的漸進信賴區間 11
3.3.2 基於概似比的漸進信賴區間 11
3.3.3 拔靴信賴區間 12
3.3.3.1 百分位數拔靴信賴區間 14
3.3.3.2 調整百分位數拔靴信賴區間 15
3.3.3.3 拔靴t信賴區間 16
第四章 模擬結果 18
4.1 點估計之評估 18
4.2 區間估計之評估 19
第五章 結論與建議 26
參考文獻 28
附錄 30
zh_TW
dc.format.extent 725315 bytes-
dc.format.mimetype application/pdf-
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G1013540251en_US
dc.subject (關鍵詞) 加速壽命試驗zh_TW
dc.subject (關鍵詞) 型二混合設限zh_TW
dc.subject (關鍵詞) 簡單加速試驗zh_TW
dc.subject (關鍵詞) 累積暴露模型zh_TW
dc.subject (關鍵詞) Weibull分配zh_TW
dc.subject (關鍵詞) 最大概似估計量的漸進信賴區間zh_TW
dc.subject (關鍵詞) 基於概似比的漸進信賴區間zh_TW
dc.subject (關鍵詞) 拔靴信賴區間zh_TW
dc.subject (關鍵詞) Accelerated life testingen_US
dc.subject (關鍵詞) type II hybrid censoringen_US
dc.subject (關鍵詞) simple step-stress testingen_US
dc.subject (關鍵詞) cumulative exposure modelen_US
dc.subject (關鍵詞) Weibull distributionen_US
dc.subject (關鍵詞) asymptotic confidence intervalen_US
dc.subject (關鍵詞) likelihood ratio-based confidence intervalen_US
dc.subject (關鍵詞) bootstrap confidence intervalen_US
dc.title (題名) 簡單加速壽命試驗及型二混合設限之Weibull資料分析zh_TW
dc.title (題名) Analysis for Weibull Data under Simple Step-Stress and Type II Hybrid Censoringen_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) 1.Balakrishnan, N. and Kundu, D. (2013). Hybrid censoring: models, inferential results and applications. Computational Statistics & Data Analysis, 57(1), 166-209.

2.Balakrishnan, N., Kundu, D. , Ng, H.K.T. and Kannan, N. (2007). Point and interval estimation for a simple step-stress model with Type-II censoring. Journal of Quality Technology, 39(1), 35-47.

3.Balakrishnan, N. and Xie, Q. (2007a). Exact inference for a simple step-stress model with Type-I hybrid censored data from the exponential distribution. Journal of Statistical Planning and Inference, 137(11), 3268-3290.

4.Balakrishnan, N. and Xie, Q. (2007b). Exact inference for a simple step-stress model with Type-II hybrid censored data from the exponential distribution. Journal of Statistical Planning and Inference, 137(8), 2543-2563.

5.Banerjee, A. and Kundu, D. (2008). Inference based on type-II hybrid censored data from a Weibull distribution. IEEE Transactions on Reliability, 57(2), 369-378.

6.Childs, A., Chandrasekar, B., Balakrishnan, N. and Kundu, D. (2003). Exact likelihood inference based on Type-I and Type-II hybrid censored samples from the exponential distribution. Annals of the Institute of Statistical Mathematics, 55(2), 319-330.

7.Epstein, B. (1954). Truncated life tests in the exponential case. The Annals of Mathematical Statistics, 25(3), 555-564.

8.Nelson, W. (1980). Accelerated life testing-step-stress models and data analyses.
IEEE Transactions on Reliability, 29(2), 103-108.

9.Nelson,W.B. (1990). Accelerated Testing, Statistical Models, Test Plans and Data Analysis, Wiley, New York, NY., .

10.Kateri, M. and Balakrishnan, N. (2008). Inference for a simple step-stress model with Type-II censoring, and Weibull distributed lifetimes. IEEE Transactions on Reliability, 57(4), 616-626.

11.Sinha, S. K. (1986). Reliability and life testing. John Wiley & Sons, Inc.

12.Venzon, D. J. and Moolgavkar, S. H. (1988). A method for computing profile-likelihood-based confidence intervals. Applied Statistics, 87-94.

13.Xiong, C. (1998). Inferences on a simple step-stress model with type-II censored exponential data. IEEE Transactions on Reliability, 47(2), 142-146.

14.洪紹媛(2013),韋伯型I混合設限資料之加速壽命試驗的推論,淡江大學數學學
系碩士班碩士論文
zh_TW