學術產出-學位論文

文章檢視/開啟

書目匯出

Google ScholarTM

政大圖書館

引文資訊

TAIR相關學術產出

題名 運用詮釋資料之線上社群圖片搜尋系統
Design and Implementation of an Annotation-Based Image Search System for Online Communities
作者 范佐玄
Fan, Zuo Syuan
貢獻者 圖書館
陳恭
Chen, Kung
范佐玄
Fan, Zuo Syuan
關鍵詞 圖片搜尋
詮釋資料
image metadata
image annotations
image search
日期 2013
上傳時間 1-十月-2014 13:40:58 (UTC+8)
摘要 近年搜尋系統的技術日漸完善,不但查詢速度快且精準度也提高,但搜尋的目標內容多是以文字為主。在圖片搜尋這項任務中,傳統的圖片搜尋系統大致分為兩種方法:一是採用低階的圖形識別方式,或是採用高階的文字內容,利用文字標籤等資訊來協助辨識圖片內容。
     本論文運用特定結構的詮釋資料(Annotation Data) 來協助辨識圖片內容,有別於文字標籤和圖片的簡單連結,我們採用的詮釋資料可以加註在照片上的特定區域,並針對該區域內的圖片內容歸屬類別以及補充文字說明。本論文並實作了一個線上社群圖片搜尋系統,提供線上社群針對有添加這種詮釋資料的圖片進行搜尋。
     本圖片搜尋系統除了讓使用者能夠簡單輸入關鍵字來尋找照片之外,並能夠限制關鍵字對應的類別是人物或是時、地、物不同屬性,還會根據照片庫內的資料關聯性來針對使用者輸入的關鍵字推薦相關的內容。
參考文獻 [1] George W. Furnas , Caterina Fake , Luis von Ahn , Joshua Schachter , Scott Golder , Kevin Fox , Marc Davis , Cameron Marlow , Mor Naaman, Why do tagging systems work?, CHI `06 extended abstracts on Human factors in computing systems, April 22-27, 2006, Montréal, Québec, Canada.
[2] Lassila, O., Swick, R. (1998). The Resource Description Framework (RDF) Model & Syntax. W3C Working Draft. http://www.w3.org/TR/WD-rdf-syntax.
[3] Stefan Decker, Dan Brickley, Janne Saarela, Jürgen Angele, A Query and Inference Service for RDF, W3C Query Languages Workshop (1998), http://purl.org/net/rdf/papers/QL98-queryservice
[4] B. McBride, "Jena: A Semantic Web Toolkit", IEEE Internet Computing, November - December 2002.
[5] Ariel Ortiz, Web development with python and django, Proceedings of the 43rd ACM technical symposium on Computer science education. ACM, 2012. P. 686.
[6] Datta, R., Joshi, D., Li, J. and Wang, J., Image Retrieval: Ideas, Influences, and Trends of the New Age. in ACM Computing Surveys, (2008).
[7] Yan, R., Natsev, A., and Campbell, M. 2007., An efficient manual image annotation approach based on tagging and browsing. In Workshop on Multimedia Information Retrieval on the Many Faces of Multimedia Semantics. ACM, New York, 13–20.
[8] A. Leff and J. Rayfield "Web-application development using the Model/View/Controller design pattern", Proc. Int. Enterprise Distrib. Object Comput. Conf., pp.118 -127 2001
[9] Lavrenko, V., R. Manmatha, and J. Jeon: 2004, ‘A model for learning the semantics of pictures’. In: Advances in Neural Information Processing Systems 16.
[10] A. Goodrum. Image information retrieval: An overview of current research. Informing Science, 3(2):63–67, 2000.
[11] Blei, D. M. and M. I. Jordan: 2003, ‘Modeling annotated data’. In: Proc. ACM SIGIR. pp. 127–134.
[12] Carneiro, G. and N. Vasconcelos: 2005a, ‘A database centric view of semantic image annotation and retrieval’. In: SIGIR. pp. 559 – 566.
[13] Makadia, A.; Pavlovic, V.; and Kumar, S. 2010. Baselines for image annotation. In IJCV, 90(1):88–105.
[14] S.-J. P. Jae-Hun Choi, Seong-Hee Park, "Design and imple-mentation of a concept-based image retrieval system with edge description templates," in SPIE Storage and Retrieval Methods and Application for Multmedia, vol. 5307, 2004, pp. 571–581.
[15] Wilson, G., Aruliah, D., Brown, C.T., Hong, N.P.C., Davis, M., Guy, R.T., Haddock, S.H., Huff, K., Mitchell, I.M., Plumbley, M.D., et al. (2012). Best practices for scientific computing.
[16] Google. Protocol Buffers: Google`s Data Interchange Format. Documentation and open source release, http://code.google.com/p/protobuf/
[17] Datta, Ritendra, Joshi, Dhiraj, Li, Jia, Wang, James Z., 2008. Image retrieval: Ideas, influences, and trends of the new age. ACM Computing Surveys 40 (2) (Article 5).
[18] P. Enser, Visual image retrieval: Seeking the alliance of concept-based and content-based paradigms, Journal of Information Science 26(4) (2000) 199–210.
描述 碩士
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0100753027
資料類型 thesis
dc.contributor 圖書館en
dc.contributor.advisor 陳恭zh_TW
dc.contributor.advisor Chen, Kungen_US
dc.contributor.author (作者) 范佐玄zh_TW
dc.contributor.author (作者) Fan, Zuo Syuanen_US
dc.creator (作者) 范佐玄zh_TW
dc.creator (作者) Fan, Zuo Syuanen
dc.date (日期) 2013-
dc.date.accessioned 1-十月-2014 13:40:58 (UTC+8)-
dc.date.accessioned 6-十一月-2014 14:16:42 (UTC+8)-
dc.date.available 1-十月-2014 13:40:58 (UTC+8)-
dc.date.available 6-十一月-2014 14:16:42 (UTC+8)-
dc.date.issued (上傳時間) 1-十月-2014 13:40:58 (UTC+8)-
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/70310-
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/71136-
dc.description (描述) 碩士en
dc.description.abstract (摘要) 近年搜尋系統的技術日漸完善,不但查詢速度快且精準度也提高,但搜尋的目標內容多是以文字為主。在圖片搜尋這項任務中,傳統的圖片搜尋系統大致分為兩種方法:一是採用低階的圖形識別方式,或是採用高階的文字內容,利用文字標籤等資訊來協助辨識圖片內容。
     本論文運用特定結構的詮釋資料(Annotation Data) 來協助辨識圖片內容,有別於文字標籤和圖片的簡單連結,我們採用的詮釋資料可以加註在照片上的特定區域,並針對該區域內的圖片內容歸屬類別以及補充文字說明。本論文並實作了一個線上社群圖片搜尋系統,提供線上社群針對有添加這種詮釋資料的圖片進行搜尋。
     本圖片搜尋系統除了讓使用者能夠簡單輸入關鍵字來尋找照片之外,並能夠限制關鍵字對應的類別是人物或是時、地、物不同屬性,還會根據照片庫內的資料關聯性來針對使用者輸入的關鍵字推薦相關的內容。
en
dc.description.tableofcontents 第一章 1
緒論 1
1.1 前言 1
1.2研究之背景 1
1.2.1 圖片搜尋(Image Search) 1
1.2.2 詮釋資料(Annotations) 2
1.2.3 資源描述框架(Resource Description Framework,RDF) 4
1.3 研究動機與目的 5
1.4 論文研究成果 6
1.5 論文之章節架構 6
第二章 7
相關研究的概況與評述 7
2.1 圖片搜尋的相關研究 7
2.2 提供圖片標記與搜尋的線上社群服務 8
2.2.1 Facebook 8
2.2.2 Flickr 9
第三章 11
研究方法與架構 11
3.1 系統架構 11
3.2 系統設計概念 11
3.3 系統設計元件 12
第四章 15
系統實作與使用者情境 15
4.1 實作方法 15
4.1.1 詮釋資料的格式定義與說明 15
4.1.2 系統運作流程 17
4.2 使用者情境 20
4.2.1 照片的資料編輯介面 20
4.2.2 照片的搜尋介面 21
4.2.3 搜尋結果的呈現與建議搜尋介面 23
第五章 25
結論與未來發展 25
5.1 結論 25
5.2 未來發展 25
參考文獻 27
zh_TW
dc.format.extent 1587540 bytes-
dc.format.extent 1587540 bytes-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.language zh_TWen
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0100753027en_US
dc.subject (關鍵詞) 圖片搜尋en
dc.subject (關鍵詞) 詮釋資料en
dc.subject (關鍵詞) image metadataen
dc.subject (關鍵詞) image annotationsen
dc.subject (關鍵詞) image searchen
dc.title (題名) 運用詮釋資料之線上社群圖片搜尋系統zh_TW
dc.title (題名) Design and Implementation of an Annotation-Based Image Search System for Online Communitiesen
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) [1] George W. Furnas , Caterina Fake , Luis von Ahn , Joshua Schachter , Scott Golder , Kevin Fox , Marc Davis , Cameron Marlow , Mor Naaman, Why do tagging systems work?, CHI `06 extended abstracts on Human factors in computing systems, April 22-27, 2006, Montréal, Québec, Canada.
[2] Lassila, O., Swick, R. (1998). The Resource Description Framework (RDF) Model & Syntax. W3C Working Draft. http://www.w3.org/TR/WD-rdf-syntax.
[3] Stefan Decker, Dan Brickley, Janne Saarela, Jürgen Angele, A Query and Inference Service for RDF, W3C Query Languages Workshop (1998), http://purl.org/net/rdf/papers/QL98-queryservice
[4] B. McBride, "Jena: A Semantic Web Toolkit", IEEE Internet Computing, November - December 2002.
[5] Ariel Ortiz, Web development with python and django, Proceedings of the 43rd ACM technical symposium on Computer science education. ACM, 2012. P. 686.
[6] Datta, R., Joshi, D., Li, J. and Wang, J., Image Retrieval: Ideas, Influences, and Trends of the New Age. in ACM Computing Surveys, (2008).
[7] Yan, R., Natsev, A., and Campbell, M. 2007., An efficient manual image annotation approach based on tagging and browsing. In Workshop on Multimedia Information Retrieval on the Many Faces of Multimedia Semantics. ACM, New York, 13–20.
[8] A. Leff and J. Rayfield "Web-application development using the Model/View/Controller design pattern", Proc. Int. Enterprise Distrib. Object Comput. Conf., pp.118 -127 2001
[9] Lavrenko, V., R. Manmatha, and J. Jeon: 2004, ‘A model for learning the semantics of pictures’. In: Advances in Neural Information Processing Systems 16.
[10] A. Goodrum. Image information retrieval: An overview of current research. Informing Science, 3(2):63–67, 2000.
[11] Blei, D. M. and M. I. Jordan: 2003, ‘Modeling annotated data’. In: Proc. ACM SIGIR. pp. 127–134.
[12] Carneiro, G. and N. Vasconcelos: 2005a, ‘A database centric view of semantic image annotation and retrieval’. In: SIGIR. pp. 559 – 566.
[13] Makadia, A.; Pavlovic, V.; and Kumar, S. 2010. Baselines for image annotation. In IJCV, 90(1):88–105.
[14] S.-J. P. Jae-Hun Choi, Seong-Hee Park, "Design and imple-mentation of a concept-based image retrieval system with edge description templates," in SPIE Storage and Retrieval Methods and Application for Multmedia, vol. 5307, 2004, pp. 571–581.
[15] Wilson, G., Aruliah, D., Brown, C.T., Hong, N.P.C., Davis, M., Guy, R.T., Haddock, S.H., Huff, K., Mitchell, I.M., Plumbley, M.D., et al. (2012). Best practices for scientific computing.
[16] Google. Protocol Buffers: Google`s Data Interchange Format. Documentation and open source release, http://code.google.com/p/protobuf/
[17] Datta, Ritendra, Joshi, Dhiraj, Li, Jia, Wang, James Z., 2008. Image retrieval: Ideas, influences, and trends of the new age. ACM Computing Surveys 40 (2) (Article 5).
[18] P. Enser, Visual image retrieval: Seeking the alliance of concept-based and content-based paradigms, Journal of Information Science 26(4) (2000) 199–210.
zh_TW