dc.contributor | 統計系 | en_US |
dc.creator (作者) | Hou, Chia-Ding ; Chiang, Jengtung ; Tai, John Jen | en_US |
dc.creator (作者) | 江振東 | zh_TW |
dc.date (日期) | 2003 | en_US |
dc.date.accessioned | 20-十一月-2014 18:13:44 (UTC+8) | - |
dc.date.available | 20-十一月-2014 18:13:44 (UTC+8) | - |
dc.date.issued (上傳時間) | 20-十一月-2014 18:13:44 (UTC+8) | - |
dc.identifier.uri (URI) | http://nccur.lib.nccu.edu.tw/handle/140.119/71610 | - |
dc.description.abstract (摘要) | In this article approximate parametric bootstrap confidence intervals for functions of multinomial proportions are discussed. The interesting feature of these confidence intervals is that they are obtained via an Edgeworth expansion approximation for the rectangular multino-mial probabilities rather than the resampling approach. In the first part of the article simultaneous confidence intervals for multinomial proportions are considered. The parametric bootstrap confidence interval appears to be the most accurate procedure. The use of this parametric bootstrap confidence region in the sample size determination problem is also discussed. In the second part of the article approximate parametric bootstrap equal-tailed confidence intervals for the minimum and maximum multinomial cell probabilities are derived. Numerical results based on a simulation study are presented to evaluate the performance of these confidence intervals. We also indicate several problems for possible future research in this area. cO 1999 Elsevier Science B.V. All rights reserved | en_US |
dc.format.extent | 231358 bytes | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | en_US | - |
dc.relation (關聯) | Computational Statistics and Data Analysis,43, 29-45 | en_US |
dc.subject (關鍵詞) | Coverage probability; Monte-Carlo method; Power-divergence statistic; Simultaneous confidence intervals; Sparse data | en_US |
dc.title (題名) | A family of simultaneous confidence intervals for multinomial proportions | en_US |
dc.type (資料類型) | article | en |
dc.identifier.doi (DOI) | 10.1016/S0167-9473(02)00169-X | en_US |
dc.doi.uri (DOI) | http://dx.doi.org/10.1016/S0167-9473(02)00169-X | en_US |