學術產出-會議論文

文章檢視/開啟

書目匯出

Google ScholarTM

政大圖書館

引文資訊

TAIR相關學術產出

題名 Change periods detection for multivariate time series with fuzzy methods
作者 Li, W.;Hu, R.;Wu, Berlin
吳柏林
貢獻者 應數系
關鍵詞 Change periods; Change-points; Cluster centers; Empirical studies; Fuzzy entropy; Fuzzy methods; Fuzzy statistic; Fuzzy time series; Germany; Integrated identification; Macroeconomic indicators; Multivariate time series; Performance indices; Structure change; Testing method; Artificial intelligence; Computer software; Membership functions; Time series; Time series analysis
日期 2009-12
上傳時間 7-五月-2015 15:28:43 (UTC+8)
摘要 Researchers have proposed a lot of detecting and testing methods about change points. While in the real case, it shows that the structure change of a time series was changed gradually, that is the change points has illustrated senses of fuzziness. This concept is important in fitting different models to different regimes of the data regarding economic interpretation of the data during that regime. In this paper we present an integrated identification procedure for change periods detection. The membership function of each system, which include multivariate time series data, corresponding to the cluster centers as performance index grouping is calculated. A fuzzy time series C* t is defined on averages of cumulative fuzzy entropies of the three time series. Finally, an empirical study about change periods identification for Germany, France and Greece major macroeconomic indicators are demonstrated. ©2009 IEEE.
關聯 Proceedings - 2009 International Conference on Computational Intelligence and Software Engineering, CiSE 2009,-5363912
資料類型 conference
DOI http://dx.doi.org/10.1109/CISE.2009.5363912
dc.contributor 應數系
dc.creator (作者) Li, W.;Hu, R.;Wu, Berlin
dc.creator (作者) 吳柏林zh_TW
dc.date (日期) 2009-12
dc.date.accessioned 7-五月-2015 15:28:43 (UTC+8)-
dc.date.available 7-五月-2015 15:28:43 (UTC+8)-
dc.date.issued (上傳時間) 7-五月-2015 15:28:43 (UTC+8)-
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/75025-
dc.description.abstract (摘要) Researchers have proposed a lot of detecting and testing methods about change points. While in the real case, it shows that the structure change of a time series was changed gradually, that is the change points has illustrated senses of fuzziness. This concept is important in fitting different models to different regimes of the data regarding economic interpretation of the data during that regime. In this paper we present an integrated identification procedure for change periods detection. The membership function of each system, which include multivariate time series data, corresponding to the cluster centers as performance index grouping is calculated. A fuzzy time series C* t is defined on averages of cumulative fuzzy entropies of the three time series. Finally, an empirical study about change periods identification for Germany, France and Greece major macroeconomic indicators are demonstrated. ©2009 IEEE.
dc.format.extent 176 bytes-
dc.format.mimetype text/html-
dc.relation (關聯) Proceedings - 2009 International Conference on Computational Intelligence and Software Engineering, CiSE 2009,-5363912
dc.subject (關鍵詞) Change periods; Change-points; Cluster centers; Empirical studies; Fuzzy entropy; Fuzzy methods; Fuzzy statistic; Fuzzy time series; Germany; Integrated identification; Macroeconomic indicators; Multivariate time series; Performance indices; Structure change; Testing method; Artificial intelligence; Computer software; Membership functions; Time series; Time series analysis
dc.title (題名) Change periods detection for multivariate time series with fuzzy methods
dc.type (資料類型) conferenceen
dc.identifier.doi (DOI) 10.1109/CISE.2009.5363912
dc.doi.uri (DOI) http://dx.doi.org/10.1109/CISE.2009.5363912