學術產出-期刊論文

文章檢視/開啟

書目匯出

Google ScholarTM

政大圖書館

引文資訊

TAIR相關學術產出

題名 A Bayesian Edgeworth expansion by Stein`s identity
作者 Weng, R.C.
翁久幸
貢獻者 統計系
日期 2010
上傳時間 21-五月-2015 15:10:51 (UTC+8)
摘要 The Edgeworth expansion is a series that approximates a probability distribution in terms of its cumulants. One can derive it by first expanding the probability distribution in Hermite orthogonal functions and then collecting terms in powers of the sample size. This paper derives an expansion for posterior distributions which possesses these features of an Edgeworth series. The techniques used are a version of Stein`s Identity and properties of Hermite polynomials. Two examples are provided to illustrate the accuracy of our series. © 2010 International Society for Bayesian Analysis.
關聯 Bayesian Analysis, Volume 5, Issue 4, Pages 741-764
資料類型 article
DOI http://dx.doi.org/10.1214/10-BA526
dc.contributor 統計系
dc.creator (作者) Weng, R.C.
dc.creator (作者) 翁久幸zh_TW
dc.date (日期) 2010
dc.date.accessioned 21-五月-2015 15:10:51 (UTC+8)-
dc.date.available 21-五月-2015 15:10:51 (UTC+8)-
dc.date.issued (上傳時間) 21-五月-2015 15:10:51 (UTC+8)-
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/75210-
dc.description.abstract (摘要) The Edgeworth expansion is a series that approximates a probability distribution in terms of its cumulants. One can derive it by first expanding the probability distribution in Hermite orthogonal functions and then collecting terms in powers of the sample size. This paper derives an expansion for posterior distributions which possesses these features of an Edgeworth series. The techniques used are a version of Stein`s Identity and properties of Hermite polynomials. Two examples are provided to illustrate the accuracy of our series. © 2010 International Society for Bayesian Analysis.
dc.format.extent 176 bytes-
dc.format.mimetype text/html-
dc.relation (關聯) Bayesian Analysis, Volume 5, Issue 4, Pages 741-764
dc.title (題名) A Bayesian Edgeworth expansion by Stein`s identity
dc.type (資料類型) articleen
dc.identifier.doi (DOI) 10.1214/10-BA526
dc.doi.uri (DOI) http://dx.doi.org/10.1214/10-BA526