學術產出-期刊論文

文章檢視/開啟

書目匯出

Google ScholarTM

政大圖書館

引文資訊

TAIR相關學術產出

題名 An EM algorithm for multivariate NIG distribution and its application to value-at-risk
作者 Chang, Y.-P.;Wang, S.-F.;Hung, M.-C.;Yu, Chih-Tun
游智惇
貢獻者 統計系
關鍵詞 Direct optimization; EM algorithms; Empirical studies; Expectation-maximization algorithms; Inverse gaussian; Multivariate normal; Simulation studies; Value at Risk; Algorithms; Gaussian distribution; Maximum likelihood estimation; Normal distribution; Risk perception; Value engineering; Parameter estimation
日期 2010-09
上傳時間 29-六月-2015 17:13:00 (UTC+8)
摘要 Many empirical studies show that the normal-inverse Gaussian (NIG) distribution allows a realistic description of asset returns. This paper deals with the maximum likelihood estimation (MLE) of parameters of the multivariate NIG (MNIG) distribution. Due to the complexity of the likelihood, direct optimization is difficult and inefficient. An expectationmaximization (EM) algorithm is proposed to compute the MLE of the MNIG parameters. This paper also deals with the Value-at-Risk (VaR) estimation for portfolio return under the MNIG distribution. In addition, a simulation study is carried out for the performance of VaR estimations, and the EM algorithm serves as an efficient way to compute portfolio VaR in the cases of the tail behavior of asset return.
關聯 International Journal of Information and Management Sciences, 21(3), 265-283
資料類型 article
dc.contributor 統計系
dc.creator (作者) Chang, Y.-P.;Wang, S.-F.;Hung, M.-C.;Yu, Chih-Tun
dc.creator (作者) 游智惇zh_TW
dc.date (日期) 2010-09
dc.date.accessioned 29-六月-2015 17:13:00 (UTC+8)-
dc.date.available 29-六月-2015 17:13:00 (UTC+8)-
dc.date.issued (上傳時間) 29-六月-2015 17:13:00 (UTC+8)-
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/76093-
dc.description.abstract (摘要) Many empirical studies show that the normal-inverse Gaussian (NIG) distribution allows a realistic description of asset returns. This paper deals with the maximum likelihood estimation (MLE) of parameters of the multivariate NIG (MNIG) distribution. Due to the complexity of the likelihood, direct optimization is difficult and inefficient. An expectationmaximization (EM) algorithm is proposed to compute the MLE of the MNIG parameters. This paper also deals with the Value-at-Risk (VaR) estimation for portfolio return under the MNIG distribution. In addition, a simulation study is carried out for the performance of VaR estimations, and the EM algorithm serves as an efficient way to compute portfolio VaR in the cases of the tail behavior of asset return.
dc.format.extent 1117351 bytes-
dc.format.mimetype application/pdf-
dc.relation (關聯) International Journal of Information and Management Sciences, 21(3), 265-283
dc.subject (關鍵詞) Direct optimization; EM algorithms; Empirical studies; Expectation-maximization algorithms; Inverse gaussian; Multivariate normal; Simulation studies; Value at Risk; Algorithms; Gaussian distribution; Maximum likelihood estimation; Normal distribution; Risk perception; Value engineering; Parameter estimation
dc.title (題名) An EM algorithm for multivariate NIG distribution and its application to value-at-risk
dc.type (資料類型) articleen