學術產出-學位論文

文章檢視/開啟

書目匯出

Google ScholarTM

政大圖書館

引文資訊

TAIR相關學術產出

題名 VBS-RTK GPS輔助單旋翼UAS熱影像定位定向之研究
VBS-RTK GPS Supported Positioning and Orientation for Helicopter UAS Thermal Images
作者 許翎㳖
Hsu, Ling Yi
貢獻者 邱式鴻
許翎㳖
Hsu, Ling Yi
關鍵詞 無人機系統
虛擬主站即時動態定位
熱影像
定位定向
光束法空三平差
熱像儀率定
Unmanned Aircraft System
VBS-RTK GPS
Thermal Images
Positioning and Orientation
Bundle Adjustment Aerial Triangulation
Thermal Camera Calibration
日期 2015
上傳時間 1-九月-2015 16:25:50 (UTC+8)
摘要 熱像儀獲取之地表溫度變化常反映地物重要資訊,若能提高其空間解析度,將可擴展其應用領域,故本研究嘗試以單旋翼無人機系統(Unmanned Aircraft System, UAS)酬載熱像儀,期更有效率地蒐集高解析度熱影像,供防災、環境監測使用。但熱控制點佈設不易,本研究欲以GPS輔助單旋翼UAS熱影像定位定向,降低地面控制點需求,故於UAS上加裝Trimble BD970 GNSS OEM接收模組,以VBS-RTK (Virtual Base Station -Real Time Kinematic, VBS-RTK) GPS定位技術,將GPS觀測資訊作為空中控制使用。但此需解決GPS天線相位中心與相機透視中心之偏移量(即GPS天線偏移量)的問題,故本研究基於光束法空中三角測量平差,視GPS天線偏移量為一定值,發展一數學模式,解決此偏移量的問題。此外,熱像儀屬於非量測型相機,本研究以野外率定場法,執行熱像儀率定,取得較精確之相機參數,供後續空中三角測量平差使用。
由模擬資料驗證本研究所發展模式之可行性,且得知GPS天線偏移量於具有其對應之觀測量約制且GPS觀測量精度高時,可成功解算GPS天線偏移量;而於真實資料中,因GPS觀測量精度不佳,即使有GPS天線偏移量觀測量約制,仍無法成功解算GPS天線偏移量。此外,由於熱影像不易匹配連結點,使其影像連結性不足,致使真實資料之空中三角測量平差精度僅於區域四角落佈設雙全控點且增加正交航帶之實驗配置與模擬資料精度於區域四角落佈設雙全控點且航帶首尾佈設全控制鍊之實驗配置相符,其精度皆可供防災與監測之用。雖真實資料之GPS觀測量精度不佳,但於影像連結性佳之情形下,仍可達到有效之空中控制,降低地控點之需求。
Thermal infrared images can show the temperature change of objects that represent the significant characteristics; therefore they have been applied on many fields. With the development of UAS (Unmanned Aircraft Systems), the thermal infrared camera can be carried on the Helicopter UAS to collect thermal images with high resolution in a local area more efficiently. However, the ground control marks for thermal images are uneasy to be set up. In this study, the Trimble BD970 GNSS OEM board will be carried on the Helicopter UAS to collect GPS data by VBS-RTK GPS technique to support the bundle adjustment for the positioning and orientation of collected thermal images, i.e. AT (Aerial Triangulation). In theorey, the GPS antenna offset is not changed and can be viewed as constant. Therefore, in this study, the new model based on bundle adjustment will be developed to solve GPS antenna offset, exterior orientation parameters and the object coordinate of tie points simultaneously by unified least squares adjustment. Besides, thermal infrared camera is a non-metric camera. In order to acquire high precision camera parameters for AT, thermal infrared camera will be calibrated by field method.
In this study, the simulated tests verify the feasibility of the new developed model for GPS supported aerial triangulation and show that the GPS antenna offset can be solved based on the ideal accuracy of GPS observations and the observation constraint of GPS antenna offset. Due to the bad accuracy of GPS observations in real data collection, the GPS antenna offset can be not solved. Besides, tie point matching for thermal images is so hard, thus the connection among images is not strong. Therefore, only the accuracy of real test data consisted of many strips with two cross trips with double control points at each corner is the same as the accuracy of simulated data. Although the accuracy of GPS obervations is bad, the GPS observations can also be used to support the bundle adjustment for the positioning and orientation of thermal images under better block geometry and ground control points still can be reduced.
參考文獻 一、  中文參考文獻
王冠中,2012,「都市土地利用型與地表溫度關係之探究──以台北市為例」,國立台灣大學森林環境暨資源學研究所碩士論文:台北。
王敏雄、劉至忠、劉正倫、蕭輔導,2006,「e-GPS衛星基準網之VBS-RTK即時動態定位系統測量成果分析」,國土測繪中心測試報告。
方啟任,2006,「熱影像技術與類神經網路應用於海堤淘 空之研究」,立德
管理學院資源環境研究所碩士論文:新竹。
中華空間資訊學會,2010,「探討及分析現行GPS技術(靜態、RTK、e-GPS
等)之作業方式」成果報告書。
李德仁、單杰,1989,「利用導航資料的光線束法區域網平差的品質分析」,
『測繪學報』,18(1): 129-136。
李德仁、袁修孝,2002,『誤差處理與可靠性理論』,武漢:武漢大學出
版社。
李璟芳,張守陽,林志平,2004,「紅外線熱影像應用於土石流監測之可行性研究」,中華水土保持學報35卷3期,頁261-274。
吳秉晃,2002, 「集集地震後阿里山地區公路邊坡之崩壞行為與熱影像特性研究」,國立成功大學土木工程學研究所碩士論文:台南。
那至中,2010,「面陣列熱影像特性之研究」,國立政治大學地政學系研究所碩士論文:台北。
范成楝,2001,「遙控飛機空載視訊影像自動化鑲嵌方法之研究」,國立中央大學土木工程研究所碩士論文:中壢。
袁修孝,2001,『GPS 輔助空中三角測量原理及應用』,北京:測繪出版
社。
莊弘豪、曾若玄、薛憲文,1996,「電廠溫排水海表溫度分布之衛星遙測初步研究」,台灣海洋工程學會,新竹。
陳源郅、林謙佑、鍾智昕、林世宗、張東柱、林振榮,2011,「應用紅外線熱像技術評估受食植昆蟲吸食樟樹葉片溫度之變異」,中華林學季刊 44卷1期,頁29-39。
郭南榮、許明光,2012,「黑潮通量及其變化之觀測-子計畫:多衛星觀測分析台灣鄰近海域黑潮運動特性及利用SAR及CODAR資料研究黑潮海域的表面流」,國立臺灣海洋大學海洋環境資訊系。
趙弘文,2009,「無人旋翼機自動駕駛系統之研發」,國立成功大學航空太空工程研究所碩士論文:台南。
謝啟文,2011,「利用Landsae ETM+熱波段影像於災害後復健狀況評估」,朝陽科技大學營建工程系研究所碩士論文:台中。
謝幸宜,2012,「以自率光束法提升四旋翼UAV航拍影像定位之精度」,國
立政治大學地政學系研究所碩士論文:台北。
顏怡和、邱式鴻、徐百輝、蔡季欣、林世賢、施錦揮,2012,「定翼型UAV
影像立體測圖之精度探討」,論文發表於〈第三十一屆測量及空間資訊
研討會〉,國立台北大學:台北,民國101年9月27日至101年9月
28日。
鄒芳諭、史天元,2010,「以非量測性相機進行內方位近景率定探討」。論
文發表於〈第二十九屆測量及空間資訊研討會〉,國立台北大學:台北,
民國99年9月2日至99年9月3日。
一、  外文參考文獻
Ackermann, F.E. 1992, “Operational Rules and Accuracy Models for GPS
Aerial Triangulation”, International Archives of Photogrammetry and Remote
Sensing, 29(B3): 691-700.
Ackermann, F. and Schade, H., 1993,“Application of GPS for Aerial
Triangulation”, Photogrammetric Engineering & Remote Sensing, 59(1):
1625-1632.
Ackermann, F.E. 1994, “On the status and accuracy performance of GPS
photogrammetry”,
Ackermann, F., 1997, “GPS for Photogrammetry”, International Society for
Photogrammetry and Remote Sensing, 56(4): 387-406.
Avery, T. E., and Berlin, G. L., 1992, Fundamentals of remote sensing and airphoto interpretation, Macmillan Publishing Company, New York, USA.
BD970 GNSS receiver module user guide, version 4.1, Trimble com., 2010.
Beyer, H. A., 1992, Geometric and radiometric analysis of a CCD-camera
basedphotogrammetric close-range system, Doctoral dissertation, Diss. Techn.
Wiss.ETH Zürich, Nr. 9701, 1992. Ref.: A. Grün; Korref.: H. Tiziani.
Bilker, M., Honkavaara, E. and Jaakkola, J., 1998, “GPS supported aerial
triangulation using untargeted ground control”, International Archives of
Photogrammetry and Remote Sensing, 32(3): pp. 2-9.
Blankenberg, L. E., 1992, “GPS supported aerial triangulation - state of the art”,
Photogrammetry Journal of Finland, 13(1): 4-16.
Brown, D.C. ,1976,“ The Bundle Adjustment: Progress and Prospects”,
International Archive of Photogrammetry, Helsinki, Finland.
Colwell, R.N., 1983, Manual of Remote Sensing, 2nd ed .Am.SOC. of photogrammetry and Remote Sensing.
Ebadi, H., 1997, A Comprehensive study on GPS Assisted Aerial Triangulation, PhD
Dissertation, Dept. of Geometrics’ Engineering. ,The University of
CALGARY,Alberta, Canada.
Eisenbeiss, H., 2004, “A mini Unmanned Aerial Vehicle (UAV): System
overview and image acquisition”, Proceeding of the International Archives
of Photogrammetry and Remote Sensing, Pitsanulok, Thailand, November
18-20.Friess, P., 1990, “Kinematic GPS Positioning for Aerial
Photogrammetry Empirical Results”, International Symposium on Precise
Positioning with the Global Positioning System, 3(7):1169-1184.
Erdas Inc., 2008, “LPS Project Manager Use’s Guide”, Norcross, Georgia.
Erdas Inc.
Faux, R. N., Maus P. and Lachowski H., Christian E. T., Matthew S. B., 2001, New approaches for monitoring stream temperature:Airborne thermal infrared remote sensing. Report Prepared for: Inventory & Monitoring Steering Committee Bob Simonson San Dimas Technology & Development Center 444 East Bonita Avenue, San Dimas, CA.
Friess, P., 1990, “Kinematic GPS Positioning for Aerial Photogrammetry
Empirical Results”, International Symposium on Precise Positioning with theGlobal Positioning System, 3(7):1169-1184.
Friess, P., 1988, “Empirical accuracy of positions computed from airborne GPS
data”, International Archives of Photogrammetry and Remote Sensing, 27(B3):215-234.
Hartmann, W., Tilch, S., Eisenbeiss, H., Schindler, K., 2012,“Determination of the UAV position by automatic processing of thermal images”, Switzerland.
Ham Y. and Fard .M.G. , 2012,“An automated vision-based method for rapid 3D energy performance modeling of existing buildings using thermal and digital imagery”, Advanced Engineering Informatics, 27(3):395–409.
Hinsken, L. U. D. G. E. R., Miller, S., Tempelmann, U., Uebbing, R. and
Walker, A. S. 2002, “Triangulation of the LH Systems’ ADS40 using
ORIMA GPS/IMU”, International Archives of Photogrammetry, Remote Sensing
and Spatial Information Sciences, 34(3A): 156-162.
Hinsken, L., 2008, “CAP-A – Combined Adjustment Program Aerial Version”,
Norcross, Georgia. Erdas Inc.
Hsu, L.Y., Chen C. Y., Chio, S.H., 2013,“The study on position and orientation
of close-range thermal infrared images”, Proceedings of International Symposium on Remote Sensing, Tokyo, Japan, May 15-17.
James, M. R., Robson, S., Pinkerton, H., Ball, M., 2006,“Oblique
photogrammetry with visibleand thermal images of active lava flows”, Bulletin of volcanology, 69(1):105-108.
Kremer, J., 2009,“Optimized data acquisition with the IGIDigiTHERM Thermal Camera System”, Photogrammetric week, Stuttgart Germany.
Lagüela, S., González-Jorge, H., Armesto, J., Arias, P., 2011, Calibration and verification ofthermographic cameras for geometric measurements. Infrared Phys. Technol. 2011(54):92-99.
Liao, C. L., and Huang, H. H., 2013, “Study on Using Thermal Image to Produce Digital Surface Temperature Model”, Proceedings of International Symposium on Remote Sensing, Tokyo, Japan, May 15-17.
Luhmann, T., Ohm, J., Piechel, J., Roelfs, T.,“Geometric Calibration of Thermographic Cameras”, In : Proceedings of the ISPRS Commission V Mid-Term Symposium on Close Range Image Measurement Techniques, Newcastle upon Tyne, UK, 21–24 June 2010; Volume 38, Part 5, pp. 411-416.
Lucas, J. R., 1987, “Aerotriangulation Without Ground Control”,
Photogrammetric Engineering and Remote Sensing, 53(3): 311-314.
Lin J.Y. and Chio, S.H., 2012,“The Accuracy Influence of Different Camera
Calibration Conditions to Bundle Adjustment of Close Range Images”,
Proceedings of The 33nd Asian Conference on Remote Sensing , Pattaya,
Thailand, November 26-30.
Mikhail, E. M., Bethel, J.S., McGlone, C.J., 2001, Introduction to Modern
Photogrammetry, USA:John Wiley & Sons Inc.
Miraliakbari, A., Hahn, M., Arefi, H., Engels, J., 2010,“Development of a low–cost sensor system for use on gyrocopters”, International Society of Photogrammetry and Remote Sensing, Commission I, Calgay- Canada 2010.
Remondino, F., and Fraser, C., 2006, “Digital Camera Calibration Methods:
Considerations and Comparisons”, ISPRS Commission V Symposium,
Dresden, Germany, September 25-27.
Ruzgiene, B. and Vainauskas, V., 2000,“Investigation of aerial triangulation applying surface deformation theory”, International Society of Photogrammetry and Remote Sensing, 33(B4):879-882.
Skarlatos, D., Procopiou, E., Stavrou, G., Gregoriou, M., 2013,“ Accuracy assessment of minimum control points for UAV photography and georeferencing” , Proceedings of International Conference on Remote Sensing and Geoinformation of Environment, Paphos, Italy, April 8-10.
Tronin, A.A., 2000,“Thermal IR satellite sensor data application for earthquake research in China”, International Journal of Remote Sensing, 21(16): 3169-3177.
Wolf, P. R. and Dewitt B. A., 2000, Elements of Photogrammetry: with Applications
in GIS, 3rd edition, U.S.A.: The McGraw-Hill Book Co.
二、  網頁參考文獻
FLIR Systems (2013, February 19).Infrared Imaging Systems, Retrieved February 19, 2013 from FLIR Systems on the World Wide Web:
http://www.FLIR.com
Trimble BD-970 ( 2014, Jane 10). Trimble BD-970 datasheet, Retrieved Jane
10,2014 from triBD-970 datasheet on the World Wide Web:
http://x9gps.com/bin/TrimbleBD970DataSheet.pdf
國土測繪中心,2014,e-GPS即時動態系統入口網站,取用日期:2010年5月7日,http://www.egps.nlsc.gov.tw
描述 碩士
國立政治大學
地政研究所
101257032
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0101257032
資料類型 thesis
dc.contributor.advisor 邱式鴻zh_TW
dc.contributor.author (作者) 許翎㳖zh_TW
dc.contributor.author (作者) Hsu, Ling Yien_US
dc.creator (作者) 許翎㳖zh_TW
dc.creator (作者) Hsu, Ling Yien_US
dc.date (日期) 2015en_US
dc.date.accessioned 1-九月-2015 16:25:50 (UTC+8)-
dc.date.available 1-九月-2015 16:25:50 (UTC+8)-
dc.date.issued (上傳時間) 1-九月-2015 16:25:50 (UTC+8)-
dc.identifier (其他 識別碼) G0101257032en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/78104-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 地政研究所zh_TW
dc.description (描述) 101257032zh_TW
dc.description.abstract (摘要) 熱像儀獲取之地表溫度變化常反映地物重要資訊,若能提高其空間解析度,將可擴展其應用領域,故本研究嘗試以單旋翼無人機系統(Unmanned Aircraft System, UAS)酬載熱像儀,期更有效率地蒐集高解析度熱影像,供防災、環境監測使用。但熱控制點佈設不易,本研究欲以GPS輔助單旋翼UAS熱影像定位定向,降低地面控制點需求,故於UAS上加裝Trimble BD970 GNSS OEM接收模組,以VBS-RTK (Virtual Base Station -Real Time Kinematic, VBS-RTK) GPS定位技術,將GPS觀測資訊作為空中控制使用。但此需解決GPS天線相位中心與相機透視中心之偏移量(即GPS天線偏移量)的問題,故本研究基於光束法空中三角測量平差,視GPS天線偏移量為一定值,發展一數學模式,解決此偏移量的問題。此外,熱像儀屬於非量測型相機,本研究以野外率定場法,執行熱像儀率定,取得較精確之相機參數,供後續空中三角測量平差使用。
由模擬資料驗證本研究所發展模式之可行性,且得知GPS天線偏移量於具有其對應之觀測量約制且GPS觀測量精度高時,可成功解算GPS天線偏移量;而於真實資料中,因GPS觀測量精度不佳,即使有GPS天線偏移量觀測量約制,仍無法成功解算GPS天線偏移量。此外,由於熱影像不易匹配連結點,使其影像連結性不足,致使真實資料之空中三角測量平差精度僅於區域四角落佈設雙全控點且增加正交航帶之實驗配置與模擬資料精度於區域四角落佈設雙全控點且航帶首尾佈設全控制鍊之實驗配置相符,其精度皆可供防災與監測之用。雖真實資料之GPS觀測量精度不佳,但於影像連結性佳之情形下,仍可達到有效之空中控制,降低地控點之需求。
zh_TW
dc.description.abstract (摘要) Thermal infrared images can show the temperature change of objects that represent the significant characteristics; therefore they have been applied on many fields. With the development of UAS (Unmanned Aircraft Systems), the thermal infrared camera can be carried on the Helicopter UAS to collect thermal images with high resolution in a local area more efficiently. However, the ground control marks for thermal images are uneasy to be set up. In this study, the Trimble BD970 GNSS OEM board will be carried on the Helicopter UAS to collect GPS data by VBS-RTK GPS technique to support the bundle adjustment for the positioning and orientation of collected thermal images, i.e. AT (Aerial Triangulation). In theorey, the GPS antenna offset is not changed and can be viewed as constant. Therefore, in this study, the new model based on bundle adjustment will be developed to solve GPS antenna offset, exterior orientation parameters and the object coordinate of tie points simultaneously by unified least squares adjustment. Besides, thermal infrared camera is a non-metric camera. In order to acquire high precision camera parameters for AT, thermal infrared camera will be calibrated by field method.
In this study, the simulated tests verify the feasibility of the new developed model for GPS supported aerial triangulation and show that the GPS antenna offset can be solved based on the ideal accuracy of GPS observations and the observation constraint of GPS antenna offset. Due to the bad accuracy of GPS observations in real data collection, the GPS antenna offset can be not solved. Besides, tie point matching for thermal images is so hard, thus the connection among images is not strong. Therefore, only the accuracy of real test data consisted of many strips with two cross trips with double control points at each corner is the same as the accuracy of simulated data. Although the accuracy of GPS obervations is bad, the GPS observations can also be used to support the bundle adjustment for the positioning and orientation of thermal images under better block geometry and ground control points still can be reduced.
en_US
dc.description.tableofcontents 第一章 緒論 1
第一節 研究背景 1
第二節 研究動機與目的 3
第三節 遭遇的問題與解決方法 5
第四節 研究流程 8
第二章 文獻回顧 10
第一節 熱像儀率定 10
第二節 航拍熱影像定位定向及其應用之研究 16
第三節 GPS輔助可見光影像定位定向 18
一、 以時間內插取得GPS觀測量 18
二、 GPS天線相位中心與相機透視中心之空間關係 19
第四節 GPS輔助光束法空三平差與地面控制點之關係 22
第三章 理論基礎與研究方法 24
第一節 虛擬基準站即時動態定位 24
一、 衛星定位基準網 24
二、 控制計算中心 25
三、 移動站使用者 25
第二節 相機率定數學模式 28
一、 相機率定模式 28
第三節 GPS輔助單旋翼UAS熱影像空三平差模式 32
一、 平差系統中之觀測方程式 32
二、 聯合平差(Unified least squares adjustment) 34
第四章 研究材料與實驗 38
第一節 儀器及軟體 38
一、 GPS接收模組:BD970 38
二、 熱像儀:FLIR-T360 39
三、 UAS:單旋翼無人直升機 41
四、 熱像儀率定軟體 42
五、 空三平差軟體:LPS 43
第二節 熱影像率定實驗 44
一、 室內率定 44
二、 野外率定 46
第三節 模擬資料實驗 50
一、 單航帶模擬資料之實驗 51
二、 區域模擬資料之實驗 74
第四節 真實資料實驗 92
一、 真實資料之實驗配置 92
二、 真實資料獲取與前處理 94
三、 真實資料實驗成果與分析 96
第五章 結論與建議 106
第一節 結論 106
第二節 建議 108
參考文獻 109
zh_TW
dc.format.extent 4804731 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0101257032en_US
dc.subject (關鍵詞) 無人機系統zh_TW
dc.subject (關鍵詞) 虛擬主站即時動態定位zh_TW
dc.subject (關鍵詞) 熱影像zh_TW
dc.subject (關鍵詞) 定位定向zh_TW
dc.subject (關鍵詞) 光束法空三平差zh_TW
dc.subject (關鍵詞) 熱像儀率定zh_TW
dc.subject (關鍵詞) Unmanned Aircraft Systemen_US
dc.subject (關鍵詞) VBS-RTK GPSen_US
dc.subject (關鍵詞) Thermal Imagesen_US
dc.subject (關鍵詞) Positioning and Orientationen_US
dc.subject (關鍵詞) Bundle Adjustment Aerial Triangulationen_US
dc.subject (關鍵詞) Thermal Camera Calibrationen_US
dc.title (題名) VBS-RTK GPS輔助單旋翼UAS熱影像定位定向之研究zh_TW
dc.title (題名) VBS-RTK GPS Supported Positioning and Orientation for Helicopter UAS Thermal Imagesen_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) 一、  中文參考文獻
王冠中,2012,「都市土地利用型與地表溫度關係之探究──以台北市為例」,國立台灣大學森林環境暨資源學研究所碩士論文:台北。
王敏雄、劉至忠、劉正倫、蕭輔導,2006,「e-GPS衛星基準網之VBS-RTK即時動態定位系統測量成果分析」,國土測繪中心測試報告。
方啟任,2006,「熱影像技術與類神經網路應用於海堤淘 空之研究」,立德
管理學院資源環境研究所碩士論文:新竹。
中華空間資訊學會,2010,「探討及分析現行GPS技術(靜態、RTK、e-GPS
等)之作業方式」成果報告書。
李德仁、單杰,1989,「利用導航資料的光線束法區域網平差的品質分析」,
『測繪學報』,18(1): 129-136。
李德仁、袁修孝,2002,『誤差處理與可靠性理論』,武漢:武漢大學出
版社。
李璟芳,張守陽,林志平,2004,「紅外線熱影像應用於土石流監測之可行性研究」,中華水土保持學報35卷3期,頁261-274。
吳秉晃,2002, 「集集地震後阿里山地區公路邊坡之崩壞行為與熱影像特性研究」,國立成功大學土木工程學研究所碩士論文:台南。
那至中,2010,「面陣列熱影像特性之研究」,國立政治大學地政學系研究所碩士論文:台北。
范成楝,2001,「遙控飛機空載視訊影像自動化鑲嵌方法之研究」,國立中央大學土木工程研究所碩士論文:中壢。
袁修孝,2001,『GPS 輔助空中三角測量原理及應用』,北京:測繪出版
社。
莊弘豪、曾若玄、薛憲文,1996,「電廠溫排水海表溫度分布之衛星遙測初步研究」,台灣海洋工程學會,新竹。
陳源郅、林謙佑、鍾智昕、林世宗、張東柱、林振榮,2011,「應用紅外線熱像技術評估受食植昆蟲吸食樟樹葉片溫度之變異」,中華林學季刊 44卷1期,頁29-39。
郭南榮、許明光,2012,「黑潮通量及其變化之觀測-子計畫:多衛星觀測分析台灣鄰近海域黑潮運動特性及利用SAR及CODAR資料研究黑潮海域的表面流」,國立臺灣海洋大學海洋環境資訊系。
趙弘文,2009,「無人旋翼機自動駕駛系統之研發」,國立成功大學航空太空工程研究所碩士論文:台南。
謝啟文,2011,「利用Landsae ETM+熱波段影像於災害後復健狀況評估」,朝陽科技大學營建工程系研究所碩士論文:台中。
謝幸宜,2012,「以自率光束法提升四旋翼UAV航拍影像定位之精度」,國
立政治大學地政學系研究所碩士論文:台北。
顏怡和、邱式鴻、徐百輝、蔡季欣、林世賢、施錦揮,2012,「定翼型UAV
影像立體測圖之精度探討」,論文發表於〈第三十一屆測量及空間資訊
研討會〉,國立台北大學:台北,民國101年9月27日至101年9月
28日。
鄒芳諭、史天元,2010,「以非量測性相機進行內方位近景率定探討」。論
文發表於〈第二十九屆測量及空間資訊研討會〉,國立台北大學:台北,
民國99年9月2日至99年9月3日。
一、  外文參考文獻
Ackermann, F.E. 1992, “Operational Rules and Accuracy Models for GPS
Aerial Triangulation”, International Archives of Photogrammetry and Remote
Sensing, 29(B3): 691-700.
Ackermann, F. and Schade, H., 1993,“Application of GPS for Aerial
Triangulation”, Photogrammetric Engineering & Remote Sensing, 59(1):
1625-1632.
Ackermann, F.E. 1994, “On the status and accuracy performance of GPS
photogrammetry”,
Ackermann, F., 1997, “GPS for Photogrammetry”, International Society for
Photogrammetry and Remote Sensing, 56(4): 387-406.
Avery, T. E., and Berlin, G. L., 1992, Fundamentals of remote sensing and airphoto interpretation, Macmillan Publishing Company, New York, USA.
BD970 GNSS receiver module user guide, version 4.1, Trimble com., 2010.
Beyer, H. A., 1992, Geometric and radiometric analysis of a CCD-camera
basedphotogrammetric close-range system, Doctoral dissertation, Diss. Techn.
Wiss.ETH Zürich, Nr. 9701, 1992. Ref.: A. Grün; Korref.: H. Tiziani.
Bilker, M., Honkavaara, E. and Jaakkola, J., 1998, “GPS supported aerial
triangulation using untargeted ground control”, International Archives of
Photogrammetry and Remote Sensing, 32(3): pp. 2-9.
Blankenberg, L. E., 1992, “GPS supported aerial triangulation - state of the art”,
Photogrammetry Journal of Finland, 13(1): 4-16.
Brown, D.C. ,1976,“ The Bundle Adjustment: Progress and Prospects”,
International Archive of Photogrammetry, Helsinki, Finland.
Colwell, R.N., 1983, Manual of Remote Sensing, 2nd ed .Am.SOC. of photogrammetry and Remote Sensing.
Ebadi, H., 1997, A Comprehensive study on GPS Assisted Aerial Triangulation, PhD
Dissertation, Dept. of Geometrics’ Engineering. ,The University of
CALGARY,Alberta, Canada.
Eisenbeiss, H., 2004, “A mini Unmanned Aerial Vehicle (UAV): System
overview and image acquisition”, Proceeding of the International Archives
of Photogrammetry and Remote Sensing, Pitsanulok, Thailand, November
18-20.Friess, P., 1990, “Kinematic GPS Positioning for Aerial
Photogrammetry Empirical Results”, International Symposium on Precise
Positioning with the Global Positioning System, 3(7):1169-1184.
Erdas Inc., 2008, “LPS Project Manager Use’s Guide”, Norcross, Georgia.
Erdas Inc.
Faux, R. N., Maus P. and Lachowski H., Christian E. T., Matthew S. B., 2001, New approaches for monitoring stream temperature:Airborne thermal infrared remote sensing. Report Prepared for: Inventory & Monitoring Steering Committee Bob Simonson San Dimas Technology & Development Center 444 East Bonita Avenue, San Dimas, CA.
Friess, P., 1990, “Kinematic GPS Positioning for Aerial Photogrammetry
Empirical Results”, International Symposium on Precise Positioning with theGlobal Positioning System, 3(7):1169-1184.
Friess, P., 1988, “Empirical accuracy of positions computed from airborne GPS
data”, International Archives of Photogrammetry and Remote Sensing, 27(B3):215-234.
Hartmann, W., Tilch, S., Eisenbeiss, H., Schindler, K., 2012,“Determination of the UAV position by automatic processing of thermal images”, Switzerland.
Ham Y. and Fard .M.G. , 2012,“An automated vision-based method for rapid 3D energy performance modeling of existing buildings using thermal and digital imagery”, Advanced Engineering Informatics, 27(3):395–409.
Hinsken, L. U. D. G. E. R., Miller, S., Tempelmann, U., Uebbing, R. and
Walker, A. S. 2002, “Triangulation of the LH Systems’ ADS40 using
ORIMA GPS/IMU”, International Archives of Photogrammetry, Remote Sensing
and Spatial Information Sciences, 34(3A): 156-162.
Hinsken, L., 2008, “CAP-A – Combined Adjustment Program Aerial Version”,
Norcross, Georgia. Erdas Inc.
Hsu, L.Y., Chen C. Y., Chio, S.H., 2013,“The study on position and orientation
of close-range thermal infrared images”, Proceedings of International Symposium on Remote Sensing, Tokyo, Japan, May 15-17.
James, M. R., Robson, S., Pinkerton, H., Ball, M., 2006,“Oblique
photogrammetry with visibleand thermal images of active lava flows”, Bulletin of volcanology, 69(1):105-108.
Kremer, J., 2009,“Optimized data acquisition with the IGIDigiTHERM Thermal Camera System”, Photogrammetric week, Stuttgart Germany.
Lagüela, S., González-Jorge, H., Armesto, J., Arias, P., 2011, Calibration and verification ofthermographic cameras for geometric measurements. Infrared Phys. Technol. 2011(54):92-99.
Liao, C. L., and Huang, H. H., 2013, “Study on Using Thermal Image to Produce Digital Surface Temperature Model”, Proceedings of International Symposium on Remote Sensing, Tokyo, Japan, May 15-17.
Luhmann, T., Ohm, J., Piechel, J., Roelfs, T.,“Geometric Calibration of Thermographic Cameras”, In : Proceedings of the ISPRS Commission V Mid-Term Symposium on Close Range Image Measurement Techniques, Newcastle upon Tyne, UK, 21–24 June 2010; Volume 38, Part 5, pp. 411-416.
Lucas, J. R., 1987, “Aerotriangulation Without Ground Control”,
Photogrammetric Engineering and Remote Sensing, 53(3): 311-314.
Lin J.Y. and Chio, S.H., 2012,“The Accuracy Influence of Different Camera
Calibration Conditions to Bundle Adjustment of Close Range Images”,
Proceedings of The 33nd Asian Conference on Remote Sensing , Pattaya,
Thailand, November 26-30.
Mikhail, E. M., Bethel, J.S., McGlone, C.J., 2001, Introduction to Modern
Photogrammetry, USA:John Wiley & Sons Inc.
Miraliakbari, A., Hahn, M., Arefi, H., Engels, J., 2010,“Development of a low–cost sensor system for use on gyrocopters”, International Society of Photogrammetry and Remote Sensing, Commission I, Calgay- Canada 2010.
Remondino, F., and Fraser, C., 2006, “Digital Camera Calibration Methods:
Considerations and Comparisons”, ISPRS Commission V Symposium,
Dresden, Germany, September 25-27.
Ruzgiene, B. and Vainauskas, V., 2000,“Investigation of aerial triangulation applying surface deformation theory”, International Society of Photogrammetry and Remote Sensing, 33(B4):879-882.
Skarlatos, D., Procopiou, E., Stavrou, G., Gregoriou, M., 2013,“ Accuracy assessment of minimum control points for UAV photography and georeferencing” , Proceedings of International Conference on Remote Sensing and Geoinformation of Environment, Paphos, Italy, April 8-10.
Tronin, A.A., 2000,“Thermal IR satellite sensor data application for earthquake research in China”, International Journal of Remote Sensing, 21(16): 3169-3177.
Wolf, P. R. and Dewitt B. A., 2000, Elements of Photogrammetry: with Applications
in GIS, 3rd edition, U.S.A.: The McGraw-Hill Book Co.
二、  網頁參考文獻
FLIR Systems (2013, February 19).Infrared Imaging Systems, Retrieved February 19, 2013 from FLIR Systems on the World Wide Web:
http://www.FLIR.com
Trimble BD-970 ( 2014, Jane 10). Trimble BD-970 datasheet, Retrieved Jane
10,2014 from triBD-970 datasheet on the World Wide Web:
http://x9gps.com/bin/TrimbleBD970DataSheet.pdf
國土測繪中心,2014,e-GPS即時動態系統入口網站,取用日期:2010年5月7日,http://www.egps.nlsc.gov.tw
zh_TW