學術產出-期刊論文

文章檢視/開啟

書目匯出

Google ScholarTM

政大圖書館

引文資訊

TAIR相關學術產出

題名 Expansions for multivariate densities
作者 Weng, Ruby C.
翁久幸
貢獻者 統計系
關鍵詞 Gram–Charlier series; Edgeworth series; Hermite polynomials; Woodroofe–Stein’s identity
日期 2015-12
上傳時間 15-一月-2016 15:08:36 (UTC+8)
摘要 The Gram–Charlier and Edgeworth series are expansions of probability distribution in terms of its cumulants. The expansions for the multivariate case have not been fully explored. This paper aims to develop the multivariate Gram–Charlier series by Woodroofe–Stein’s identity, and improve its approximation property by using the scaled normal density and Hermite polynomials. The series are useful to reconstruct the probability distribution from measurable higher moments.
關聯 Journal of Statistical Planning & Inference, 167, 174-181
資料類型 article
DOI http://dx.doi.org/10.1016/j.jspi.2015.05.001
dc.contributor 統計系
dc.creator (作者) Weng, Ruby C.
dc.creator (作者) 翁久幸zh_TW
dc.date (日期) 2015-12
dc.date.accessioned 15-一月-2016 15:08:36 (UTC+8)-
dc.date.available 15-一月-2016 15:08:36 (UTC+8)-
dc.date.issued (上傳時間) 15-一月-2016 15:08:36 (UTC+8)-
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/80610-
dc.description.abstract (摘要) The Gram–Charlier and Edgeworth series are expansions of probability distribution in terms of its cumulants. The expansions for the multivariate case have not been fully explored. This paper aims to develop the multivariate Gram–Charlier series by Woodroofe–Stein’s identity, and improve its approximation property by using the scaled normal density and Hermite polynomials. The series are useful to reconstruct the probability distribution from measurable higher moments.
dc.format.extent 430360 bytes-
dc.format.mimetype application/pdf-
dc.relation (關聯) Journal of Statistical Planning & Inference, 167, 174-181
dc.subject (關鍵詞) Gram–Charlier series; Edgeworth series; Hermite polynomials; Woodroofe–Stein’s identity
dc.title (題名) Expansions for multivariate densities
dc.type (資料類型) article
dc.identifier.doi (DOI) 10.1016/j.jspi.2015.05.001
dc.doi.uri (DOI) http://dx.doi.org/10.1016/j.jspi.2015.05.001