學術產出-學位論文

文章檢視/開啟

書目匯出

Google ScholarTM

政大圖書館

引文資訊

TAIR相關學術產出

題名 混合線性模型推測問題之研究
作者 洪可音
貢獻者 陳麗霞
洪可音
關鍵詞 混合線性模型
變異數成份
最佳線性不偏推測量
經驗最佳線性不偏推測量
變異數比率
最大概似法
殘差最大概似法
Mixed linear model
Variance components
Best linear unbiased predictor (BLUP)
Empirical best linear unbiased predictor (EBLUP)
Variance ratio
Maximum likelihood method
Residual maximum likelihood method
日期 2000
上傳時間 31-三月-2016 14:44:50 (UTC+8)
摘要 當線性模型中包含隨機效果項時,若將之視為固定效果或直接忽略,往往會造成嚴重的推測偏差,故應以混合線性模型為架構。若模式中只包含一個隨機效果項,則模式中有兩個變異數成份,若包含 個隨機效果項,則模式中有 個變異數成份。本論文主要在介紹至少兩個變異數成份時固定效果及隨機效果線性組合的最佳線性不偏推測量(BLUP),及其推測區間之推導與建立。然而BLUP實為變異數比率的函數,若變異數比率未知,而以最大概似法(Maximum Likelihood Method)或殘差最大概似法(Residual Maximum Likelihood Method)估計出變異數比率,再代入BLUP中,則得到的是經驗最佳線性不偏推測量(EBLUP)。至於推測區間則與EBLUP的均方誤有關,本論文先介紹如何求算其漸近不偏估計量,再介紹EBLUP之推測誤差除以 後,其自由度的估算方法,據以建構推測區間。
When random effects are contained in the model, if they are treated as fixed effects or ignore, then it may result in serious prediction bias. Instead, mixed linear model is to be considered. If there is one source of random effects, then the model has two variance components, while it has variance components, if the model contains random effects. This study primarily presents the derivation of the best linear unbiased predictor (BLUP) of a linear combination of the fixed and random effects, and then the conduction of the prediction interval when the model contains at least two variance components. However, BLUP is a function of variance ratios. If the variance ratios are unknown, we can replace them by their maximum likelihood estimates or residual maximum likelihood estimates, then we can get empirical best linear unbiased predictor (EBLUP). Because prediction interval is relating to the mean squared error (MSE) of EBLUP, so the study first introduces how to get its approximate unbiased estimator, m<sub>a</sub> , then introduces how to evaluate the degrees of freedom of the ratio of the prediction error for the EBLUP and m<sub>a</sub> <sup>1/2</sup> , in order to use both of them to establish the prediction interval.
參考文獻 [1] Dempster, A.P. and Selwyn, M.R. (1984), “Statistical and Computational Aspects of Mixed Linear Model Analysis,” Applied Statistics, 33, No.2, 203-214.
[2] Harville, D.A. and Carriquiry,A.L. (1992), “Classical and Bayesian Predictions as Applied to an Unbalanced Mixed Linear Model,” Biometrics, 48, 987-1003.
[3] Harville, D.A. (1990), BLUP(Best Linear Unbiased Prediction) and beyond, New York: Springer-Veriag.
[4] Harville, D.A. and Callanan, T.P. (1990), Computational aspects of likelihood-based inference for variance components, New York: Springer-Veriag.
[5] Harville, D.A. and Fenech, A.P. (1985), “Confidence intervals for a variance ratio, or for heritability, in an unbalanced mixed linear model,” Biometrics, 41, 137-152.
[6] Hulting, F.L. and Harville, D.A.(1991), “Some Bayesian procedures for the analysis of comparative experiments and for small-area estimation: Computational aspects, frequentist properties, and relationships,” Journal of the American Statistical Association, 86, 557-568.
[7] Harville, D.A. (1974), “Bayesian inference for variance components using only error contrasts,” Biometrika, 61, 383-385.
[8] Jeske. D. R. and Harville, D.A. (1981), “Prediction-interval procedures and (fixed-effects) confidence-interval procedures for mixed linear models, ”Communications in statistics-Theory and Methods, 10, 401-406.
[9] Kackar, R.N. and Harville, D.A. (1981), “Unbiasedness of two-stage estimation and prediction procedure for mixed linear models, ” Communications in statistics-Theory and Methods, Sec. A., 10, 1249-1261.
[10] Kackar, R.N. and Harville, D.A. (1984), “Approximation for standard errors of estimators of fixed and random effects in mixed linear models, ” Journal of the American Statistical Association, 79, 853-862.
[11] McGilchrist, C.A. and Yau, K.K.W (1995), “The Derivation of BLUP, ML, REML Estimation Methods For Generalised Linear Mixed Models,” Commun. Statist.-Theory Meth., 24(12), 2963-2980.
[12] Prasad, N.G.N. and Rao, J.N.K.(1990), “The estimation of the mean squared error of small-area estimators,” Journal of the American Statistical Association, 85, 163-171.
描述 碩士
國立政治大學
統計學系
87354018
資料來源 http://thesis.lib.nccu.edu.tw/record/#A2002001942
資料類型 thesis
dc.contributor.advisor 陳麗霞zh_TW
dc.contributor.author (作者) 洪可音zh_TW
dc.creator (作者) 洪可音zh_TW
dc.date (日期) 2000en_US
dc.date.accessioned 31-三月-2016 14:44:50 (UTC+8)-
dc.date.available 31-三月-2016 14:44:50 (UTC+8)-
dc.date.issued (上傳時間) 31-三月-2016 14:44:50 (UTC+8)-
dc.identifier (其他 識別碼) A2002001942en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/83248-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 統計學系zh_TW
dc.description (描述) 87354018zh_TW
dc.description.abstract (摘要) 當線性模型中包含隨機效果項時,若將之視為固定效果或直接忽略,往往會造成嚴重的推測偏差,故應以混合線性模型為架構。若模式中只包含一個隨機效果項,則模式中有兩個變異數成份,若包含 個隨機效果項,則模式中有 個變異數成份。本論文主要在介紹至少兩個變異數成份時固定效果及隨機效果線性組合的最佳線性不偏推測量(BLUP),及其推測區間之推導與建立。然而BLUP實為變異數比率的函數,若變異數比率未知,而以最大概似法(Maximum Likelihood Method)或殘差最大概似法(Residual Maximum Likelihood Method)估計出變異數比率,再代入BLUP中,則得到的是經驗最佳線性不偏推測量(EBLUP)。至於推測區間則與EBLUP的均方誤有關,本論文先介紹如何求算其漸近不偏估計量,再介紹EBLUP之推測誤差除以 後,其自由度的估算方法,據以建構推測區間。zh_TW
dc.description.abstract (摘要) When random effects are contained in the model, if they are treated as fixed effects or ignore, then it may result in serious prediction bias. Instead, mixed linear model is to be considered. If there is one source of random effects, then the model has two variance components, while it has variance components, if the model contains random effects. This study primarily presents the derivation of the best linear unbiased predictor (BLUP) of a linear combination of the fixed and random effects, and then the conduction of the prediction interval when the model contains at least two variance components. However, BLUP is a function of variance ratios. If the variance ratios are unknown, we can replace them by their maximum likelihood estimates or residual maximum likelihood estimates, then we can get empirical best linear unbiased predictor (EBLUP). Because prediction interval is relating to the mean squared error (MSE) of EBLUP, so the study first introduces how to get its approximate unbiased estimator, m<sub>a</sub> , then introduces how to evaluate the degrees of freedom of the ratio of the prediction error for the EBLUP and m<sub>a</sub> <sup>1/2</sup> , in order to use both of them to establish the prediction interval.en_US
dc.description.tableofcontents 封面頁
證明書
致謝詞
論文摘要
目錄
第一章 緒論
1.1 研究動機及目的
1.2 論文架構
第二章 兩個變異數成份的混合線性模型
2.1 模型介紹
2.2 估計與推測
2.2.1 BLUP與EBLUP
2.2.2 變異數比率及變異數之估計
2.2.3 的EBULP之運算過程
2.3 的BLUP與EBLUP之均方誤差
2.3.1 的均方誤差之運算過程
2.3.2 推測誤差的抽樣分配
2.4 對EBLUP構造的推測區間之修正
第三章 多個變異數成份的混合線性模型
3.1 模型介紹
3.2 估計與推測
3.2.1 BLUP與EBLUP
3.2.2 變異數比率及變異數之估計
3.3 的BLUP與EBLUP之均方誤差
3.3.1 的均方誤差之運算過程
3.3.2 的均方誤差之運算過程
3.4 對EBLUP構造的推測區間之修正
第四章 實例分析
4.1 實例一
4.2 實例二
第五章 結論與建議
附錄
附錄一
附錄二
附錄三
附錄四
參考文獻
zh_TW
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#A2002001942en_US
dc.subject (關鍵詞) 混合線性模型zh_TW
dc.subject (關鍵詞) 變異數成份zh_TW
dc.subject (關鍵詞) 最佳線性不偏推測量zh_TW
dc.subject (關鍵詞) 經驗最佳線性不偏推測量zh_TW
dc.subject (關鍵詞) 變異數比率zh_TW
dc.subject (關鍵詞) 最大概似法zh_TW
dc.subject (關鍵詞) 殘差最大概似法zh_TW
dc.subject (關鍵詞) Mixed linear modelen_US
dc.subject (關鍵詞) Variance componentsen_US
dc.subject (關鍵詞) Best linear unbiased predictor (BLUP)en_US
dc.subject (關鍵詞) Empirical best linear unbiased predictor (EBLUP)en_US
dc.subject (關鍵詞) Variance ratioen_US
dc.subject (關鍵詞) Maximum likelihood methoden_US
dc.subject (關鍵詞) Residual maximum likelihood methoden_US
dc.title (題名) 混合線性模型推測問題之研究zh_TW
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) [1] Dempster, A.P. and Selwyn, M.R. (1984), “Statistical and Computational Aspects of Mixed Linear Model Analysis,” Applied Statistics, 33, No.2, 203-214.
[2] Harville, D.A. and Carriquiry,A.L. (1992), “Classical and Bayesian Predictions as Applied to an Unbalanced Mixed Linear Model,” Biometrics, 48, 987-1003.
[3] Harville, D.A. (1990), BLUP(Best Linear Unbiased Prediction) and beyond, New York: Springer-Veriag.
[4] Harville, D.A. and Callanan, T.P. (1990), Computational aspects of likelihood-based inference for variance components, New York: Springer-Veriag.
[5] Harville, D.A. and Fenech, A.P. (1985), “Confidence intervals for a variance ratio, or for heritability, in an unbalanced mixed linear model,” Biometrics, 41, 137-152.
[6] Hulting, F.L. and Harville, D.A.(1991), “Some Bayesian procedures for the analysis of comparative experiments and for small-area estimation: Computational aspects, frequentist properties, and relationships,” Journal of the American Statistical Association, 86, 557-568.
[7] Harville, D.A. (1974), “Bayesian inference for variance components using only error contrasts,” Biometrika, 61, 383-385.
[8] Jeske. D. R. and Harville, D.A. (1981), “Prediction-interval procedures and (fixed-effects) confidence-interval procedures for mixed linear models, ”Communications in statistics-Theory and Methods, 10, 401-406.
[9] Kackar, R.N. and Harville, D.A. (1981), “Unbiasedness of two-stage estimation and prediction procedure for mixed linear models, ” Communications in statistics-Theory and Methods, Sec. A., 10, 1249-1261.
[10] Kackar, R.N. and Harville, D.A. (1984), “Approximation for standard errors of estimators of fixed and random effects in mixed linear models, ” Journal of the American Statistical Association, 79, 853-862.
[11] McGilchrist, C.A. and Yau, K.K.W (1995), “The Derivation of BLUP, ML, REML Estimation Methods For Generalised Linear Mixed Models,” Commun. Statist.-Theory Meth., 24(12), 2963-2980.
[12] Prasad, N.G.N. and Rao, J.N.K.(1990), “The estimation of the mean squared error of small-area estimators,” Journal of the American Statistical Association, 85, 163-171.
zh_TW