學術產出-學位論文

文章檢視/開啟

書目匯出

Google ScholarTM

政大圖書館

引文資訊

TAIR相關學術產出

題名 模糊時間數列的階次認定、模式建構及預測
The Order Identification of Fuzzy Time Series, Models Construction and Forecasting
作者 廖敏治
貢獻者 吳柏林
廖敏治
關鍵詞 模糊時間數列
階次認定
模式建構
模糊自相似度
隸屬度函數
模糊趨勢
模糊季節性
Fuzzy time series
Order identification
Models construction
Fuzzy auto-similarity
Membership function
Fuzzy trend
Fuzzy seasonal
日期 1998
上傳時間 14-四月-2016 13:57:23 (UTC+8)
摘要 本文將模糊理論的觀念,應用到時間數列分析上。研究重點包括模糊自相似度的定義與度量,模糊自迴歸係數的分析,模糊相似度辨識與自迴歸階次認定、模糊時間數列模式建構與預測等。我們首先給定模糊時間數列模式的概念與一些重要性質。接著提出模糊相似度的定義與度量,以及模式建構的流程。經由系統性的模擬與分析,我們建立階次認定的演算法則與認定程序。藉著詳細的演算比較這些類型的模糊時間數列。並以模糊關係方程式推導,提出合適的模糊時間數列模式建構方法。並利用提出的方法對台灣的景氣對策信號,及台灣結婚率建立模糊時間數列模式。最後,使用所建構的模糊時間數列模式對未來進行預測,以驗證所建構模糊時間數列模式的效率性與實用性。
In modeling a time series the accuracy of various model constructions and forecasting techniques, certain rules and models are adhered to. Traditional methods on the model construction for a time series are based on the researchers` experience by choosing a "good" model, which will satisfactorily explain its dynamic behavior, from a model-base. But a fundamental question that often arises is: does the data exhibit the real case honestly? In this research we show how fuzzy time series construction be applied for this purpose. An order detection process for fuzzy time series is presented. Simulation has been used extensively to explore general properties of statistical procedures, and the approach is particularly useful in fuzzy time series construction. Statistical strategies typically consist of sequences of rules used repeatedly on the same data set.
描述 博士
國立政治大學
統計學系
資料來源 http://thesis.lib.nccu.edu.tw/record/#A2002000638
資料類型 thesis
dc.contributor.advisor 吳柏林zh_TW
dc.contributor.author (作者) 廖敏治zh_TW
dc.creator (作者) 廖敏治zh_TW
dc.date (日期) 1998en_US
dc.date.accessioned 14-四月-2016 13:57:23 (UTC+8)-
dc.date.available 14-四月-2016 13:57:23 (UTC+8)-
dc.date.issued (上傳時間) 14-四月-2016 13:57:23 (UTC+8)-
dc.identifier (其他 識別碼) A2002000638en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/84406-
dc.description (描述) 博士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 統計學系zh_TW
dc.description.abstract (摘要) 本文將模糊理論的觀念,應用到時間數列分析上。研究重點包括模糊自相似度的定義與度量,模糊自迴歸係數的分析,模糊相似度辨識與自迴歸階次認定、模糊時間數列模式建構與預測等。我們首先給定模糊時間數列模式的概念與一些重要性質。接著提出模糊相似度的定義與度量,以及模式建構的流程。經由系統性的模擬與分析,我們建立階次認定的演算法則與認定程序。藉著詳細的演算比較這些類型的模糊時間數列。並以模糊關係方程式推導,提出合適的模糊時間數列模式建構方法。並利用提出的方法對台灣的景氣對策信號,及台灣結婚率建立模糊時間數列模式。最後,使用所建構的模糊時間數列模式對未來進行預測,以驗證所建構模糊時間數列模式的效率性與實用性。zh_TW
dc.description.abstract (摘要) In modeling a time series the accuracy of various model constructions and forecasting techniques, certain rules and models are adhered to. Traditional methods on the model construction for a time series are based on the researchers` experience by choosing a "good" model, which will satisfactorily explain its dynamic behavior, from a model-base. But a fundamental question that often arises is: does the data exhibit the real case honestly? In this research we show how fuzzy time series construction be applied for this purpose. An order detection process for fuzzy time series is presented. Simulation has been used extensively to explore general properties of statistical procedures, and the approach is particularly useful in fuzzy time series construction. Statistical strategies typically consist of sequences of rules used repeatedly on the same data set.en_US
dc.description.tableofcontents 封面頁
證明書
致謝詞
論文摘要
目錄
表目錄
圖目錄
1.前言
2.模糊集合理論與模糊時間數列
2.1模糊測度
2.2隸屬度函數與模糊時間數列分析
2.3模糊時間數列類型的探討
3.模糊時間數列模式的建構
3.1模糊趨勢(FUZZY TREND)與模糊季節性(FUZZY SEASONAL)
3.2模糊關係矩陣R的計算
3.3糊時間數列階次的認定
3.4模糊時間數列模式的建構步驟及流程
4.模糊時間數列階次認定模擬
4.1模擬一階模糊時間數列及其自相似度
4.2模擬二階模糊時間數列及其自相似度
4.3擬結果探討
4.4階次判定演算法則
5.實例
5.1景氣對策信號
5.2結婚率
5.3註冊人數
6.結論
參考文獻
附錄
zh_TW
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#A2002000638en_US
dc.subject (關鍵詞) 模糊時間數列zh_TW
dc.subject (關鍵詞) 階次認定zh_TW
dc.subject (關鍵詞) 模式建構zh_TW
dc.subject (關鍵詞) 模糊自相似度zh_TW
dc.subject (關鍵詞) 隸屬度函數zh_TW
dc.subject (關鍵詞) 模糊趨勢zh_TW
dc.subject (關鍵詞) 模糊季節性zh_TW
dc.subject (關鍵詞) Fuzzy time seriesen_US
dc.subject (關鍵詞) Order identificationen_US
dc.subject (關鍵詞) Models constructionen_US
dc.subject (關鍵詞) Fuzzy auto-similarityen_US
dc.subject (關鍵詞) Membership functionen_US
dc.subject (關鍵詞) Fuzzy trenden_US
dc.subject (關鍵詞) Fuzzy seasonalen_US
dc.title (題名) 模糊時間數列的階次認定、模式建構及預測zh_TW
dc.title (題名) The Order Identification of Fuzzy Time Series, Models Construction and Forecastingen_US
dc.type (資料類型) thesisen_US