學術產出-學位論文
文章檢視/開啟
書目匯出
-
題名 有Christmas tree boundaries的序貫實驗後之區間估計改善
An Improved Confidence Interval for a Sequential Test With Christmas Tree Boundaries作者 林炳良 貢獻者 翁久幸
林炳良關鍵詞 singed-root transformation
triangular test
Christmas tree adjustment日期 2001 上傳時間 15-四月-2016 16:09:51 (UTC+8) 摘要 The goal of this thesis is to derive an accurate confidence interval after a sequential test with Christmas tree boundaries. We shall begin with an approximate pivot based on signed-root transformation, then apply the procedure of Weng and Woodroofe [2000] to derive an improved confidence interval. Accuracy of the theoretical result is investigated by simulations. 參考文獻 Armitage, P. Numerical studies in the sequential estimation of binomial parameter. Biometrika, 45:1-15, 1958.Chang, M. N. Confidence intervals for a normal mean following a group sequential test. Biometrics, 45:247-254, 1989.Coad, D. S. and Woodroofe, M. Corrected confidence intervals after sequential testing with applications to survival analysis. Biometrika, 83:763-777, 1996.Rosner, G. L. and Tsiatis A. A.. Exact confidence limits following group sequential test. Biometrika, 75:723-729, 1988.Ross, S. Stochastic Process. Second Edition, John Wiley, New York, 1996.Siegmund, D. Estimation following sequential testing. Biometrika, 65:341-349, 1978.Siegmund, D. Sequential Analysis. Springer, New York, 1985.Ting, D. Y. Estimations following sequential comparison of two binomial populations, N.C.C.U. Press, (unpublished), 2000.Todd, S., Whitehead, J. and Facey. K.M. Point and interval estimation following a sequential clinical trial. Biometrika, 83:165-461, 1996.Woodroofe, M. Very weak expansions for sequentially designed experiments: linear models. Ann. Statist., 17:1087-1102, 1989.Woodroofe, M. Estimation after sequential testing: A simple approach for a truncated sequential probability ratio test. Biometrika, 79:347-353, 1992.Weng, R. C. and Woodroofe, M. Integrable expansions for posterior distributions for multiparameter exponential families with applications to sequential confidence levels. Statistica Sinica, 2000.Whitehead, J. Large sequential methods with application to the analysis of 2 by 2 contingency tables. Biometrika, 65:351-356, 1978.Whitehead, J. The Design and Analysis of Sequential Clinical Trials. Second Edition, John Wiley, New York, 1997. 描述 碩士
國立政治大學
統計學系
88354007資料來源 http://thesis.lib.nccu.edu.tw/record/#A2002001342 資料類型 thesis dc.contributor.advisor 翁久幸 zh_TW dc.contributor.author (作者) 林炳良 zh_TW dc.creator (作者) 林炳良 zh_TW dc.date (日期) 2001 en_US dc.date.accessioned 15-四月-2016 16:09:51 (UTC+8) - dc.date.available 15-四月-2016 16:09:51 (UTC+8) - dc.date.issued (上傳時間) 15-四月-2016 16:09:51 (UTC+8) - dc.identifier (其他 識別碼) A2002001342 en_US dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/85130 - dc.description (描述) 碩士 zh_TW dc.description (描述) 國立政治大學 zh_TW dc.description (描述) 統計學系 zh_TW dc.description (描述) 88354007 zh_TW dc.description.abstract (摘要) The goal of this thesis is to derive an accurate confidence interval after a sequential test with Christmas tree boundaries. We shall begin with an approximate pivot based on signed-root transformation, then apply the procedure of Weng and Woodroofe [2000] to derive an improved confidence interval. Accuracy of the theoretical result is investigated by simulations. en_US dc.description.tableofcontents 封面頁證明書致謝詞論文摘要目錄表目錄圖目錄1. Introduction2. The Binary Responses Case2.1 The Sequential Background2.2 The Model2.3 Two-Treatment Case2.4 Three-Treatment Case3. Simulation Results3.1 Simulated Size and Power With or Without Christmas Tree adjustment3.2 Simulations for Two-Treatment Case3.3 Confidence interval for Log-Odds-Ratio3.4 Simulations for Three-Treatment Case4. Discussions5. References zh_TW dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#A2002001342 en_US dc.subject (關鍵詞) singed-root transformation en_US dc.subject (關鍵詞) triangular test en_US dc.subject (關鍵詞) Christmas tree adjustment en_US dc.title (題名) 有Christmas tree boundaries的序貫實驗後之區間估計改善 zh_TW dc.title (題名) An Improved Confidence Interval for a Sequential Test With Christmas Tree Boundaries en_US dc.type (資料類型) thesis en_US dc.relation.reference (參考文獻) Armitage, P. Numerical studies in the sequential estimation of binomial parameter. Biometrika, 45:1-15, 1958.Chang, M. N. Confidence intervals for a normal mean following a group sequential test. Biometrics, 45:247-254, 1989.Coad, D. S. and Woodroofe, M. Corrected confidence intervals after sequential testing with applications to survival analysis. Biometrika, 83:763-777, 1996.Rosner, G. L. and Tsiatis A. A.. Exact confidence limits following group sequential test. Biometrika, 75:723-729, 1988.Ross, S. Stochastic Process. Second Edition, John Wiley, New York, 1996.Siegmund, D. Estimation following sequential testing. Biometrika, 65:341-349, 1978.Siegmund, D. Sequential Analysis. Springer, New York, 1985.Ting, D. Y. Estimations following sequential comparison of two binomial populations, N.C.C.U. Press, (unpublished), 2000.Todd, S., Whitehead, J. and Facey. K.M. Point and interval estimation following a sequential clinical trial. Biometrika, 83:165-461, 1996.Woodroofe, M. Very weak expansions for sequentially designed experiments: linear models. Ann. Statist., 17:1087-1102, 1989.Woodroofe, M. Estimation after sequential testing: A simple approach for a truncated sequential probability ratio test. Biometrika, 79:347-353, 1992.Weng, R. C. and Woodroofe, M. Integrable expansions for posterior distributions for multiparameter exponential families with applications to sequential confidence levels. Statistica Sinica, 2000.Whitehead, J. Large sequential methods with application to the analysis of 2 by 2 contingency tables. Biometrika, 65:351-356, 1978.Whitehead, J. The Design and Analysis of Sequential Clinical Trials. Second Edition, John Wiley, New York, 1997. zh_TW