學術產出-學位論文
文章檢視/開啟
書目匯出
-
題名 網頁資料發掘技術導入網站經營者之研究-以入口網站之分類索引服務為例 作者 林繼文 貢獻者 裘錦天
林繼文關鍵詞 資料發掘
商業智慧
網站經營者
入口網站
流量指標日期 2001 上傳時間 18-四月-2016 16:26:33 (UTC+8) 摘要 網頁資料發掘為從全球資訊網所發現或分析而得的有用資訊。若能在訪客所留下的紀錄中,分析出這些資訊,對於經營者而言是一個重要的決策依據。入口網站幾乎僅以廣告為主要收入,如何借重網頁資料發掘技術來了解網路使用者的行為,作為加強網站內容設計與經營方向的參考,當為目前經營者所關心的重要課題。本研究將導入知識的觀點,利用商業智慧中的資料發掘技術,實際分析網站的紀錄資料,研究網頁資料發掘技術對於網站經營者的幫助,進而為企業組織帶來競爭優勢。 參考文獻 [1] 何光國,圖書資訊組織原理,三民書局,民國79年,頁25至26。 [2] 吳琮璠、謝清佳,資訊管理 理論與實務,民國85年,頁1-10至1-12。 [3] 邵敏華,建構開放性之企業知識管理系統,國立政治大學資訊管理研究所碩士論文,民國87年。 [4] 馮國卿,知識管理在電子圖書館應用之研究,國立政治大學圖書資訊研究所碩士論文,民國87年。 [5] 劉容志,IBM Software Update,民國87年10月。 [6] 謝清俊,公共資訊系統概說,圖書館與資訊研究論文集,漢美書局,民國85年,頁163。 [7] 樓玉玲,以資料發掘技術分析政大通識課程,國立政治大學資訊管理研究所碩士論文,民國87年。 [8] 主題網際資訊,Visitor Relationship Management – WebTrends Enterprise Reporting Server,客戶關係管理研討會,民國89年五月。 [9] Adriaans, P. and Zantinge, D., Data Mining, Addison-Wesley, 1996. [10] Bellinger, G., “Knowledge Management”, http://www.outsights.com/systems/kmgmt/kmgmt.htm [11] Berry, M. J. A. and Linoff, G., Data Mining Technique For Marketing, Sale, And Customer Support, Wiley Computer, 1997. [12] Cabena, P., Hadjinian, P., Stadler, R., Verhees, J., and Zanasi, A., Discovering Data Mining – From Concept to Implementation, Prentice Hall Ptr, 1998. [13] Codd, E. F., “Providing OLAP to User- Analysis: An IT Mandate”, Sep. 1998, http://www.arborsoft.com/essbase/wht_ppr/coodcl.html [14] Connelly, R., McNeill, R., and Mosimann, R., The Multi Dimensional Manager, Cognos, Oct. 1996. [15] Cooley, R., Mobasher, B., and Srivastava, J., “Data Preparation for Mining World Wide Web Browsing Patterns”, Knowledge and Information Systems, Vol. 1, No. 1, 1999. [16] Davis, M. C., “Knowledge Management”, Information Strategy: The Executive’s Journal, Fall 1998. [17] Harris, D.B., “Creating A Knowledge Centric Information Technology Environment”, Sep. 1998, http://www.htcs.com/ckc.html [18] Drucker, P. F., Post-Capitalist Society, Harper Collins, 1993, pp. 25-30. [19] Edvinsson, L. and Sullivan, P., “Developing a Model for Managing Intellectual Capital”, European Management Journal, Vol. 14. No. 4, Aug. 1996, pp. 356-364. [20] Fayyad, U. M., “Data Mining and Knowledge Discovery: Making Sense Out of Data”, IEEE Expert, Oct. 1996, pp. 20-25. [21] Fayyad, U. M. and Ramasamy, U., “Data Mining and Knowledge Discovery in Database”, Communications of The ACM, Nov. 1996, Vol. 39, pp. 24-26. [22] Frawley, W. J., Piatesky-Shapiro, and Matheus, G. C. J., Knowledge Discovery in Database: An Overview, AAAI/MIT Press, 1991, pp. 1-30. [23] Fuld, L. M., The New Competitor Intelligence: The Complete Resource for Finding, Analyzing, and Using Information about Your Competitors, NY: Wiley, 1995. [24] Gilad, B., The Art and Science of Business Intelligence Analysis: Business Intelligence Theory, Principles, Practices, and Uses”, ed. Gilad, B. and Herring, J. P., Jai Press Inc., 1996, p.4. [25] Gloede, C., “Designing A Business Intelligence System”, Midrange Systems, Dec. 12, 1997, pp. 49-50. [26] Greening, D. R., “Data Mining on the Web - There`s Gold in that Mountain of Data”, http://www.webtechniques.com/archives/2000/01/greening/ [27] Grupe, F. H. and Owrang, M. M., “Data Base Mining Discovering New Knowledge and Cooperative Advantage,” Information Systems Management, Fall 1995, pp.26-31. [28] Hildebrand, C., “All Aboard the BI Bandwagon”, CIO, Vol.11, Jul. 15, 1998, p. 16. [29] IBM, “IBM Data Management White Paper - If data were money, would you manage it differently?”, 1999, http://www.software.ibm.com/data/busn-intel/biadinsert [30] Inmon, W. H., Building the Data Warehouse, Wellesley, MA:QED Technical Publishing Group, 1992. [31] Komenar, M., Electronic Marketing, Wiley Computer Publishing, 1993, pp.80-81. [32] Malhotra, Y., “World Wide Web Virtual Library on Knowledge Management”, Aug. 1998, http://www.brint.com/km/ [33] Microsoft Sales Online!, Microsoft SQL Server Questions and Answers: “What is a data warehouse?”, Jan.1, 1997, http://www.microsoft.com/salesinfo/qa/mssq1013.html [34] Mobasher, B., Cooley, R., and Srivastava, J., “Web Mining: Information and Pattern Discovery on the World Wide Web”, http://www-users.cs.umn.edu/~mobasher/webminer/survey/survey.html [35] Nonaka, I., “The Knowledge Creating Company”, Harvard Business Review, Nov.-Dec., 1991, pp. 96-104. [36] Nonaka, I. and Takeuchi, H., The Knowledge Creating Company: How Japanese Companies Create the Dynamics of Innovation, Oxford University Express, 1995, p. 54. [37] OLAP Council, “OLAP and OLAP Server Definitions,” Sep. 1998, http://www.olapcouncil.org/research/ [38] Paitetsky-Shapiro, G., Discovery, Analysis, and Presentation of Strong Rules”, Knowledge Discovery in Database, ed. G. Piatetsky-Shapiro and Frawley, W. J., CA: AAAI/MIT Press, 1991, pp. 229-238. [39] Shaw, R. and Stone, M., Database Marketing, Aldershot: Gwer Publishing, 1990. [40] Spek, R. van der and Spijkervet, A., “Knowledge Management: Dealing Intelligency with Knowledge”, Knowledge Management and Its Integrative Elements, ed. Liebowitz, J. and Wilcox, L. C. , NY: CRC Press, 1997, p. 40. [41] Vedder, R. G. and Vanecek, M. T., “Competitive Intelligence for IT Resource Planning: Some Lessons Learned”, Information Strategy: The Executive’s Journal, Fall 1998, pp. 29-36. [42] Wilson, R. F., “Web Marketing Today”, Jul. 1, 2000, http://www.wilsonweb.com/articles/bannerad.htm [43] Zanasi, A., “Competitive Intelligence through Data Mining Public Sources”, Competitive Intelligence Review, Vol. 9, 1998, pp. 44-54. 描述 碩士
國立政治大學
資訊管理學系
86356001資料來源 http://thesis.lib.nccu.edu.tw/record/#A2002001575 資料類型 thesis dc.contributor.advisor 裘錦天 zh_TW dc.contributor.author (作者) 林繼文 zh_TW dc.creator (作者) 林繼文 zh_TW dc.date (日期) 2001 en_US dc.date.accessioned 18-四月-2016 16:26:33 (UTC+8) - dc.date.available 18-四月-2016 16:26:33 (UTC+8) - dc.date.issued (上傳時間) 18-四月-2016 16:26:33 (UTC+8) - dc.identifier (其他 識別碼) A2002001575 en_US dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/85360 - dc.description (描述) 碩士 zh_TW dc.description (描述) 國立政治大學 zh_TW dc.description (描述) 資訊管理學系 zh_TW dc.description (描述) 86356001 zh_TW dc.description.abstract (摘要) 網頁資料發掘為從全球資訊網所發現或分析而得的有用資訊。若能在訪客所留下的紀錄中,分析出這些資訊,對於經營者而言是一個重要的決策依據。入口網站幾乎僅以廣告為主要收入,如何借重網頁資料發掘技術來了解網路使用者的行為,作為加強網站內容設計與經營方向的參考,當為目前經營者所關心的重要課題。本研究將導入知識的觀點,利用商業智慧中的資料發掘技術,實際分析網站的紀錄資料,研究網頁資料發掘技術對於網站經營者的幫助,進而為企業組織帶來競爭優勢。 zh_TW dc.description.tableofcontents 封面頁 證明書 致謝詞 論文摘要 目錄 圖目錄 表目錄 第一章 緒論 第一節 研究背景與動機 第二節 研究目的 第三節 研究範圍與限制 第四節 研究方法與步驟 第五節 研究架構與流程 第二章 文獻探討 第一節 知識與知識管理 第二節 資料庫與資料倉儲 第三節 資料發掘與商業智慧 第四節 網頁資料發掘 第三章 研究方法 第一節 研究架構 第二節 研究方法 第三節 研究流程 第四節 研究步驟 第四章 資料分析 第一節 資料分析程序 第二節 流量指標分析 第三節 資源使用分析 第四節 使用者活動分析 第五章 結論與建議 第一節 研究發現 第二節 研究建議 第三節 結論 參考文獻 zh_TW dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#A2002001575 en_US dc.subject (關鍵詞) 資料發掘 zh_TW dc.subject (關鍵詞) 商業智慧 zh_TW dc.subject (關鍵詞) 網站經營者 zh_TW dc.subject (關鍵詞) 入口網站 zh_TW dc.subject (關鍵詞) 流量指標 zh_TW dc.title (題名) 網頁資料發掘技術導入網站經營者之研究-以入口網站之分類索引服務為例 zh_TW dc.type (資料類型) thesis en_US dc.relation.reference (參考文獻) [1] 何光國,圖書資訊組織原理,三民書局,民國79年,頁25至26。 [2] 吳琮璠、謝清佳,資訊管理 理論與實務,民國85年,頁1-10至1-12。 [3] 邵敏華,建構開放性之企業知識管理系統,國立政治大學資訊管理研究所碩士論文,民國87年。 [4] 馮國卿,知識管理在電子圖書館應用之研究,國立政治大學圖書資訊研究所碩士論文,民國87年。 [5] 劉容志,IBM Software Update,民國87年10月。 [6] 謝清俊,公共資訊系統概說,圖書館與資訊研究論文集,漢美書局,民國85年,頁163。 [7] 樓玉玲,以資料發掘技術分析政大通識課程,國立政治大學資訊管理研究所碩士論文,民國87年。 [8] 主題網際資訊,Visitor Relationship Management – WebTrends Enterprise Reporting Server,客戶關係管理研討會,民國89年五月。 [9] Adriaans, P. and Zantinge, D., Data Mining, Addison-Wesley, 1996. [10] Bellinger, G., “Knowledge Management”, http://www.outsights.com/systems/kmgmt/kmgmt.htm [11] Berry, M. J. A. and Linoff, G., Data Mining Technique For Marketing, Sale, And Customer Support, Wiley Computer, 1997. [12] Cabena, P., Hadjinian, P., Stadler, R., Verhees, J., and Zanasi, A., Discovering Data Mining – From Concept to Implementation, Prentice Hall Ptr, 1998. [13] Codd, E. F., “Providing OLAP to User- Analysis: An IT Mandate”, Sep. 1998, http://www.arborsoft.com/essbase/wht_ppr/coodcl.html [14] Connelly, R., McNeill, R., and Mosimann, R., The Multi Dimensional Manager, Cognos, Oct. 1996. [15] Cooley, R., Mobasher, B., and Srivastava, J., “Data Preparation for Mining World Wide Web Browsing Patterns”, Knowledge and Information Systems, Vol. 1, No. 1, 1999. [16] Davis, M. C., “Knowledge Management”, Information Strategy: The Executive’s Journal, Fall 1998. [17] Harris, D.B., “Creating A Knowledge Centric Information Technology Environment”, Sep. 1998, http://www.htcs.com/ckc.html [18] Drucker, P. F., Post-Capitalist Society, Harper Collins, 1993, pp. 25-30. [19] Edvinsson, L. and Sullivan, P., “Developing a Model for Managing Intellectual Capital”, European Management Journal, Vol. 14. No. 4, Aug. 1996, pp. 356-364. [20] Fayyad, U. M., “Data Mining and Knowledge Discovery: Making Sense Out of Data”, IEEE Expert, Oct. 1996, pp. 20-25. [21] Fayyad, U. M. and Ramasamy, U., “Data Mining and Knowledge Discovery in Database”, Communications of The ACM, Nov. 1996, Vol. 39, pp. 24-26. [22] Frawley, W. J., Piatesky-Shapiro, and Matheus, G. C. J., Knowledge Discovery in Database: An Overview, AAAI/MIT Press, 1991, pp. 1-30. [23] Fuld, L. M., The New Competitor Intelligence: The Complete Resource for Finding, Analyzing, and Using Information about Your Competitors, NY: Wiley, 1995. [24] Gilad, B., The Art and Science of Business Intelligence Analysis: Business Intelligence Theory, Principles, Practices, and Uses”, ed. Gilad, B. and Herring, J. P., Jai Press Inc., 1996, p.4. [25] Gloede, C., “Designing A Business Intelligence System”, Midrange Systems, Dec. 12, 1997, pp. 49-50. [26] Greening, D. R., “Data Mining on the Web - There`s Gold in that Mountain of Data”, http://www.webtechniques.com/archives/2000/01/greening/ [27] Grupe, F. H. and Owrang, M. M., “Data Base Mining Discovering New Knowledge and Cooperative Advantage,” Information Systems Management, Fall 1995, pp.26-31. [28] Hildebrand, C., “All Aboard the BI Bandwagon”, CIO, Vol.11, Jul. 15, 1998, p. 16. [29] IBM, “IBM Data Management White Paper - If data were money, would you manage it differently?”, 1999, http://www.software.ibm.com/data/busn-intel/biadinsert [30] Inmon, W. H., Building the Data Warehouse, Wellesley, MA:QED Technical Publishing Group, 1992. [31] Komenar, M., Electronic Marketing, Wiley Computer Publishing, 1993, pp.80-81. [32] Malhotra, Y., “World Wide Web Virtual Library on Knowledge Management”, Aug. 1998, http://www.brint.com/km/ [33] Microsoft Sales Online!, Microsoft SQL Server Questions and Answers: “What is a data warehouse?”, Jan.1, 1997, http://www.microsoft.com/salesinfo/qa/mssq1013.html [34] Mobasher, B., Cooley, R., and Srivastava, J., “Web Mining: Information and Pattern Discovery on the World Wide Web”, http://www-users.cs.umn.edu/~mobasher/webminer/survey/survey.html [35] Nonaka, I., “The Knowledge Creating Company”, Harvard Business Review, Nov.-Dec., 1991, pp. 96-104. [36] Nonaka, I. and Takeuchi, H., The Knowledge Creating Company: How Japanese Companies Create the Dynamics of Innovation, Oxford University Express, 1995, p. 54. [37] OLAP Council, “OLAP and OLAP Server Definitions,” Sep. 1998, http://www.olapcouncil.org/research/ [38] Paitetsky-Shapiro, G., Discovery, Analysis, and Presentation of Strong Rules”, Knowledge Discovery in Database, ed. G. Piatetsky-Shapiro and Frawley, W. J., CA: AAAI/MIT Press, 1991, pp. 229-238. [39] Shaw, R. and Stone, M., Database Marketing, Aldershot: Gwer Publishing, 1990. [40] Spek, R. van der and Spijkervet, A., “Knowledge Management: Dealing Intelligency with Knowledge”, Knowledge Management and Its Integrative Elements, ed. Liebowitz, J. and Wilcox, L. C. , NY: CRC Press, 1997, p. 40. [41] Vedder, R. G. and Vanecek, M. T., “Competitive Intelligence for IT Resource Planning: Some Lessons Learned”, Information Strategy: The Executive’s Journal, Fall 1998, pp. 29-36. [42] Wilson, R. F., “Web Marketing Today”, Jul. 1, 2000, http://www.wilsonweb.com/articles/bannerad.htm [43] Zanasi, A., “Competitive Intelligence through Data Mining Public Sources”, Competitive Intelligence Review, Vol. 9, 1998, pp. 44-54. zh_TW