學術產出-學位論文

文章檢視/開啟

書目匯出

Google ScholarTM

政大圖書館

引文資訊

TAIR相關學術產出

題名 非線型時間序列之動態競爭模型
Dynamic Competing Model of Non-linear Time Series
作者 李奇穎
Lee, Chi-Ying
貢獻者 吳柏林
Wu Berlin
李奇穎
Lee, Chi-Ying
關鍵詞 非線型時間序列
時變系統
遺傳演算法
預測
Non-linear time series
Time variant system
Genetic Algorithms
Forecasting
日期 1996
上傳時間 28-四月-2016 13:30:07 (UTC+8)
摘要 時間序列分析發展至今,常常發現動態資料的走勢,隨著時間過程而演變.所以傳統的模式配適常無法得到很好的解釋,因此許多學者提出不同的模型建構方法.但是對於初始模式族的選擇,卻充滿相當的主觀與經驗認定成份.本文針對時變型時間序列分析,考慮利用知識庫,由模式庫來判斷初始模式.再藉由遺傳演算法的觀念,建立模式參數的遺傳關係.我們把這種遺傳演算法,稱之為時變遺傳演算法.針對台灣省國中數學教師人數,分別以時變遺傳演算法,狀態空間,與單變量ARIMA來建構模式,並作比較.比較結果發現,時變遺傳演算法較能掌握資料反轉的趨勢,且預測值增加較為平緩.因此時變遺傳演算法在模式建構上將是個不錯的選擇.
In time series analysis, we find often the trend of dynamic
參考文獻 湯振鶴(1 991). 台灣區國民中學八十至八十六學年度教師需求量之推估研究報告.台灣省教育廳﹒台北市教育局、高雄市教育局合辦台中市大德國中承辦
     馬信行(1987) 我國各級學校未來學生數之預測,政大學報第56期,117-147
     馬信行(1 992) 我國各級學校師資之預測 政大學報第65期 63-80
     詐瑞雯、吳柏林(1 994). 台灣地區國中教師數預測模式 教育與心理研究第17期29-44.
     台灣省政府教育廳(1971-1994) 台灣省教育統計年報
     Andel, J. ( 1993 ) . A Time Series Model with Suddenly Changing Paramenters. Journal of Time Series Analysys. vol. 14 No.2. 111-123.
     Akaike, H. (1974). A New Look at The Statistical Model Identtification. IEEE Transactions on Automatic Control. AC-19. 716-723.
     Box, G. E . P. and Jenkins, G. M. (1976). Time Series Analysis: Forecasting and Control. Holden-Day, San Fancisco.
     Giordana, A., Saitta, L., Campidogio, M. E. and Bello, G. L. (1993). Learning Relations Using Genetic Algorithms. Advances in Artifical Intelligence. 218-229.
     Goldberg, D. E. (1989). Genetic Algorithms: In Search, Optimization, and Machine Learning. Addison-Wesley Publishing Company.
     Inclan, C. and Tiao, G. C. (1994). Use of Cumulative Sum of Squares for Retrospective Detection of changes of Variance. Journal of the American Statistical Association. 913-923.
     Koza, 1. R. (1994) . Genetic Programming 11 : Automatic Discovery of Reusable Programs. N1IT Press, 1994.
     Laurence, D. (1992). Genetic Algorithms and Financial Applications. Neural ` Genetic
     and Fuzzy Systems for Chaotic Financiallvfarkets. 133-147. John Wiley and Sons Inc.
     Odetayo, M. O. (1995). Knowledge Acquisition and Adaptation: A Genetic Approach. Expert Systems. vol.l2, No.1. 3-13.
     Parzen, E. (1977). Multiple Time Series Modeling : Detennining The Order of Approximating Autoregressive Schemes. Multivariate Analysis IV 283-295 .
     Schwartz, G. (1978). Estimating The Dimension of A Model. Ann.Statist, 6 . 461-464.
     Shumway, R. H. and Stoffer, D. S. (1991). Dynamjc Linear Models With Switching.
     Journal ojthe American Statistical Association. 763-769.
     Wei, W. \\V. S. (1990). Time Series Analysis: Univariate and Multivariate Methods. Addision-Wesley Inc.
     Zurada,1. M. ( 1992). Introduction to Artifical Neural System. 56-58. West Publishing Company.
描述 碩士
國立政治大學
應用數學系
83751012
資料來源 http://thesis.lib.nccu.edu.tw/record/#B2002002896
資料類型 thesis
dc.contributor.advisor 吳柏林zh_TW
dc.contributor.advisor Wu Berlinen_US
dc.contributor.author (作者) 李奇穎zh_TW
dc.contributor.author (作者) Lee, Chi-Yingen_US
dc.creator (作者) 李奇穎zh_TW
dc.creator (作者) Lee, Chi-Yingen_US
dc.date (日期) 1996en_US
dc.date.accessioned 28-四月-2016 13:30:07 (UTC+8)-
dc.date.available 28-四月-2016 13:30:07 (UTC+8)-
dc.date.issued (上傳時間) 28-四月-2016 13:30:07 (UTC+8)-
dc.identifier (其他 識別碼) B2002002896en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/87371-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 應用數學系zh_TW
dc.description (描述) 83751012zh_TW
dc.description.abstract (摘要) 時間序列分析發展至今,常常發現動態資料的走勢,隨著時間過程而演變.所以傳統的模式配適常無法得到很好的解釋,因此許多學者提出不同的模型建構方法.但是對於初始模式族的選擇,卻充滿相當的主觀與經驗認定成份.本文針對時變型時間序列分析,考慮利用知識庫,由模式庫來判斷初始模式.再藉由遺傳演算法的觀念,建立模式參數的遺傳關係.我們把這種遺傳演算法,稱之為時變遺傳演算法.針對台灣省國中數學教師人數,分別以時變遺傳演算法,狀態空間,與單變量ARIMA來建構模式,並作比較.比較結果發現,時變遺傳演算法較能掌握資料反轉的趨勢,且預測值增加較為平緩.因此時變遺傳演算法在模式建構上將是個不錯的選擇.zh_TW
dc.description.abstract (摘要) In time series analysis, we find often the trend of dynamicen_US
dc.description.tableofcontents 一.前言..........1
     二.遺傳演算法之理論架構..........3
     2.1知識庫的學習方法..........3
     2.2遺傳演算法(GENETIC ALGORITHM)..........4
     三.非線型時間序列動態競爭模型之實證應用..........9
     3.1資料分析..........9
     3.2時變遺傳演算法所建構之模型..........11
     3.3狀態空間所建構之模型..........13
     3.4單變量時間序列所建構之模型..........16
     四.各種方法之應用比較..........18
     4.1方法論之比較..........18
     4.2實證應用之比較..........19
     五.結論..........21
     參考文獻..........22
     附錄..........24
zh_TW
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#B2002002896en_US
dc.subject (關鍵詞) 非線型時間序列zh_TW
dc.subject (關鍵詞) 時變系統zh_TW
dc.subject (關鍵詞) 遺傳演算法zh_TW
dc.subject (關鍵詞) 預測zh_TW
dc.subject (關鍵詞) Non-linear time seriesen_US
dc.subject (關鍵詞) Time variant systemen_US
dc.subject (關鍵詞) Genetic Algorithmsen_US
dc.subject (關鍵詞) Forecastingen_US
dc.title (題名) 非線型時間序列之動態競爭模型zh_TW
dc.title (題名) Dynamic Competing Model of Non-linear Time Seriesen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) 湯振鶴(1 991). 台灣區國民中學八十至八十六學年度教師需求量之推估研究報告.台灣省教育廳﹒台北市教育局、高雄市教育局合辦台中市大德國中承辦
     馬信行(1987) 我國各級學校未來學生數之預測,政大學報第56期,117-147
     馬信行(1 992) 我國各級學校師資之預測 政大學報第65期 63-80
     詐瑞雯、吳柏林(1 994). 台灣地區國中教師數預測模式 教育與心理研究第17期29-44.
     台灣省政府教育廳(1971-1994) 台灣省教育統計年報
     Andel, J. ( 1993 ) . A Time Series Model with Suddenly Changing Paramenters. Journal of Time Series Analysys. vol. 14 No.2. 111-123.
     Akaike, H. (1974). A New Look at The Statistical Model Identtification. IEEE Transactions on Automatic Control. AC-19. 716-723.
     Box, G. E . P. and Jenkins, G. M. (1976). Time Series Analysis: Forecasting and Control. Holden-Day, San Fancisco.
     Giordana, A., Saitta, L., Campidogio, M. E. and Bello, G. L. (1993). Learning Relations Using Genetic Algorithms. Advances in Artifical Intelligence. 218-229.
     Goldberg, D. E. (1989). Genetic Algorithms: In Search, Optimization, and Machine Learning. Addison-Wesley Publishing Company.
     Inclan, C. and Tiao, G. C. (1994). Use of Cumulative Sum of Squares for Retrospective Detection of changes of Variance. Journal of the American Statistical Association. 913-923.
     Koza, 1. R. (1994) . Genetic Programming 11 : Automatic Discovery of Reusable Programs. N1IT Press, 1994.
     Laurence, D. (1992). Genetic Algorithms and Financial Applications. Neural ` Genetic
     and Fuzzy Systems for Chaotic Financiallvfarkets. 133-147. John Wiley and Sons Inc.
     Odetayo, M. O. (1995). Knowledge Acquisition and Adaptation: A Genetic Approach. Expert Systems. vol.l2, No.1. 3-13.
     Parzen, E. (1977). Multiple Time Series Modeling : Detennining The Order of Approximating Autoregressive Schemes. Multivariate Analysis IV 283-295 .
     Schwartz, G. (1978). Estimating The Dimension of A Model. Ann.Statist, 6 . 461-464.
     Shumway, R. H. and Stoffer, D. S. (1991). Dynamjc Linear Models With Switching.
     Journal ojthe American Statistical Association. 763-769.
     Wei, W. \\V. S. (1990). Time Series Analysis: Univariate and Multivariate Methods. Addision-Wesley Inc.
     Zurada,1. M. ( 1992). Introduction to Artifical Neural System. 56-58. West Publishing Company.
zh_TW