學術產出-學位論文
文章檢視/開啟
書目匯出
-
題名 The Influence of Variance in Two-Armed Bandit Problems 作者 黃秋霖
Huang, Qiu-Lin貢獻者 余清祥
Yu, Qing-Xiang
黃秋霖
Huang, Qiu-Lin關鍵詞 Two-armed bandit問題
治療法
策略
效用函數
變異因子日期 1995 上傳時間 28-四月-2016 15:06:28 (UTC+8) 摘要 本論文主要是發掘變異數在Two-armed Bandit問題中的影響。在文中我們假設兩種治療法的成功率分別是θ1和θ2,且以π1~Beta(cα,cβ)和π2~Beta(α,β)為其驗前機率分配。此外,我們假設所有病人數(N)已知。
The focus of the report is to find the influence of variance in Two-armed Bandit problems. In this report, we consider the case when the success probabilities of the two treatmentsθ1,θ2 haveπ1~Beta(cα,cβ) andπ2~Beta(α,β) as their priors, and the total number of patients, N is known.參考文獻 [1] Apostal, T. M. (1975) Mathematical analysis. Addison- Wesley. [2] Berry, D. A. and Fristedt, B. (1985) Bandit problems - Sequential allocation of experiments, Ch.apm.an and Hall. [3] Berry, D. A. and Pearson, L. (1984) Optimal design for two-stage clinical trials with dichotomous responses. Unit. of Minnesota Tech.. Rep. [4] Canner, P. L. (1970). Selecting one of the two treatments when the responses are dichotomous, J.A.S.A. , 65, 293-306. [5] Chernoff, H. and Ray, S. N. (1965). A bayes sequential sampling inspection plan. Ann. Math.. Statist. 36, 1387-1407. [6] Clayton, M. K. and ` Witmer, J. A. (1988) Two-stage bandit , Annals of Stat. Vo1.16 , No.2, 887-894. [7] Colton, T. (1963) A model for selecting one of two medical treatment. J.A.S.A. , 58, 388-400. [8] Cornfield, J., Halperin, M. , and Greenhouse, S.W. (1969). An adaptive procedure for sequential clinical trials. 1. A.S.A, 64, 759- 770. [9] Eick, S. G. (1988) The two-armed bandit with delayed responses, Annals of Stat, Vol.l6, No.2: 254-264. [10] Eick, S. G. (1988) Gittins procedures for bandits with delayed responses: J.R.S.S. , Soc. B , 50, No.1, 125-132 . [11] Petkau, A. J. (1978) Sequential medical trials for comparing an experimental with a standard treatment. 1. Am.er. Statist. Assoc, 73, 328-338. [12] Witmer, J. A. (1983) Bayesian multistage decision problems, Ph. D. Thesis. [13] Witmer , J. A. (1986) Bayesian multistage decision problems, Annals of Stat., Vol. 14, No. 1. 283-297. 描述 碩士
國立政治大學
統計學系資料來源 http://thesis.lib.nccu.edu.tw/record/#B2002003013 資料類型 thesis dc.contributor.advisor 余清祥 zh_TW dc.contributor.advisor Yu, Qing-Xiang en_US dc.contributor.author (作者) 黃秋霖 zh_TW dc.contributor.author (作者) Huang, Qiu-Lin en_US dc.creator (作者) 黃秋霖 zh_TW dc.creator (作者) Huang, Qiu-Lin en_US dc.date (日期) 1995 en_US dc.date.accessioned 28-四月-2016 15:06:28 (UTC+8) - dc.date.available 28-四月-2016 15:06:28 (UTC+8) - dc.date.issued (上傳時間) 28-四月-2016 15:06:28 (UTC+8) - dc.identifier (其他 識別碼) B2002003013 en_US dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/87532 - dc.description (描述) 碩士 zh_TW dc.description (描述) 國立政治大學 zh_TW dc.description (描述) 統計學系 zh_TW dc.description.abstract (摘要) 本論文主要是發掘變異數在Two-armed Bandit問題中的影響。在文中我們假設兩種治療法的成功率分別是θ1和θ2,且以π1~Beta(cα,cβ)和π2~Beta(α,β)為其驗前機率分配。此外,我們假設所有病人數(N)已知。 zh_TW dc.description.abstract (摘要) The focus of the report is to find the influence of variance in Two-armed Bandit problems. In this report, we consider the case when the success probabilities of the two treatmentsθ1,θ2 haveπ1~Beta(cα,cβ) andπ2~Beta(α,β) as their priors, and the total number of patients, N is known. en_US dc.description.tableofcontents Abstract i 1INTRODUCTION 1 1.1PRELIMINARIES..........1 1.2LITERATURE REVIEW..........4 2MODEL 7 2.1INTRODUCTION..........7 2.2ASSUMPTION..........7 2.3STRATEGIES..........9 3KNOWN TRIAL LENGTH 12 3.1INTRODUCTION..........12 3.2GENERAL RESULTS..........13 3.3THE INFLUENCE OF THE VARIANCE FACTOR..........24 3.4CONTINUITY OF UTILITY FUNCTION..........37 4CONCLUSION AND COMMENTS 41 Bibliography 43 zh_TW dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#B2002003013 en_US dc.subject (關鍵詞) Two-armed bandit問題 zh_TW dc.subject (關鍵詞) 治療法 zh_TW dc.subject (關鍵詞) 策略 zh_TW dc.subject (關鍵詞) 效用函數 zh_TW dc.subject (關鍵詞) 變異因子 zh_TW dc.title (題名) The Influence of Variance in Two-Armed Bandit Problems zh_TW dc.type (資料類型) thesis en_US dc.relation.reference (參考文獻) [1] Apostal, T. M. (1975) Mathematical analysis. Addison- Wesley. [2] Berry, D. A. and Fristedt, B. (1985) Bandit problems - Sequential allocation of experiments, Ch.apm.an and Hall. [3] Berry, D. A. and Pearson, L. (1984) Optimal design for two-stage clinical trials with dichotomous responses. Unit. of Minnesota Tech.. Rep. [4] Canner, P. L. (1970). Selecting one of the two treatments when the responses are dichotomous, J.A.S.A. , 65, 293-306. [5] Chernoff, H. and Ray, S. N. (1965). A bayes sequential sampling inspection plan. Ann. Math.. Statist. 36, 1387-1407. [6] Clayton, M. K. and ` Witmer, J. A. (1988) Two-stage bandit , Annals of Stat. Vo1.16 , No.2, 887-894. [7] Colton, T. (1963) A model for selecting one of two medical treatment. J.A.S.A. , 58, 388-400. [8] Cornfield, J., Halperin, M. , and Greenhouse, S.W. (1969). An adaptive procedure for sequential clinical trials. 1. A.S.A, 64, 759- 770. [9] Eick, S. G. (1988) The two-armed bandit with delayed responses, Annals of Stat, Vol.l6, No.2: 254-264. [10] Eick, S. G. (1988) Gittins procedures for bandits with delayed responses: J.R.S.S. , Soc. B , 50, No.1, 125-132 . [11] Petkau, A. J. (1978) Sequential medical trials for comparing an experimental with a standard treatment. 1. Am.er. Statist. Assoc, 73, 328-338. [12] Witmer, J. A. (1983) Bayesian multistage decision problems, Ph. D. Thesis. [13] Witmer , J. A. (1986) Bayesian multistage decision problems, Annals of Stat., Vol. 14, No. 1. 283-297. zh_TW