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Abstract This article proposes a process through which a finance practitioner’s
knowledge interacts with artificial intelligence (AI) models. AI models are widely
applied, but how these models learn or whether they learn the right things is not eas-
ily unveiled. Extant studies especially regarding neural networks have attempted to
extract reliable rules/features from AI models. However, if these models make mis-
takes, then the decision maker may establish paradoxical beliefs. Therefore, extracted
rules/features should be justified via the prior thoughts, and vice versa. That is, with
these extracted rules/features, a practitioner may need either to update his or her belief
or to disregard the AI models. This study sets up a finance demonstraion for the
proposed process. The proposed guide demonstrates an abductive-reasoning effect.

Keywords Abductive reasoning · Rule extraction · Neural networks ·
Linear/nonlinear programming

1 Background and Related Research

Suppose a practitioner has the financial domain knowledge to set up propositions and
data-mining schemes to develop acceptable artificial intelligence (AI) models and then
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to extract reliable rules/features. With the extracted rules/features, the practitioner may
update his or her beliefs regarding the hypothetical features. On one hand, he or she
may feel convinced of certain features that are however absent in the literature; on the
other hand, the practitioner may find certain features stated in the literature uncon-
vincingly hypothetical. This study proposes an abductive-reasoning1 guide whereby
such a practitioner can update his or her beliefs based on rules/features extracted from
obtained AI models.2

Moreover, this proposed abductive-reasoning guide may add to the literature in the
agent-based computational finance (ref. to LeBaron 2000), where the computer sim-
ulated markets with individual adaptive agents are used. Furthermore, in the artificial
market, using a neural network trained with several inputs including all publicly avail-
able price information from earlier periods, agents may be equipped with capacity of
price forecast. This has the impact on price dynamics, in which the researchers are
usually interested, and learning alone is another interesting topic. However, to our
best knowledge, there is lack of studies in exploring agents’ knowledge embedded in
the networks and further justifying the obtained knowledge. This study addresses this
challenge.

In addition to the artificial market, our proposed guide may apply in the real market.
According to the financial options history, options are traded in the market before
the introduction of pricing models (Black and Scholes 1973). Option traders were
eager but unable to extract features or draw conclusions from the observed option
prices. Moreover, traders encounter the same problem for several well-traded exotic
options. With our guide, option traders may obtain empirical comprehension before
the theoretical pricing models are proposed. The popular options pricing simulation
calculates the fair price without knowing the closed-form valuation formula. Given
the fair price suggested by the simulation results, the investor benefits from a practice
that extracts key pricing features from the observed option prices, which allows the
investor to update his or her beliefs regarding the hypothetical features that are either
unconvinced-but-existing or convinced-but-absent.

For convenience, let y be the explained (dependent) variable and x be the vector of
explanatory (independent) variables. Moreover, eliminating the noise, y may be the
function of x in general cases. Then the practitioner usually uses samples in the target
area, a set of {x} space, to train AI models. Based on his or her finance expertise,
the practitioner holds a list of hypothetical features; one of the listed features, for
instance, is the positive second-order differential relation between the response y and
the i th explanatory variable xi embedded in the (training) sample. Because the AI
model is well-known for its ability as a universal approximator, the practitioner comes
to Hypothesis (1), in which y’ is the output of model that approximates y:

1 Suppose the hypothesis: IF A, THEN B. Peirce (1992, 2011) stated that we abduce a hypothetical
explanation A from an observed unanticipated circumstance B. The reasoning is that A may be true because
then B would be a matter of course.
2 This task works in concert with the emphasis of Domingos (2007) on the importance of the process of
inducing knowledge from both the practitioner and the data-mining process.
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If there is an embedded feature
∂2 y

∂x2
i

> 0 in the (training) samples of the

target area, then the acceptable AI models should present in unanimity the

feature
∂2 y′
∂x2

i

> 0 in the target area. (1)

Take neural networks, a popular AI model (e.g. Andreou et al. 2006; Kiani and Kastens
2008; Kiani 2011; Reboredo et al. 2012), as an example to illustrate the abductive-
reasoning guide. Existing studies in neural networks demonstrate several ways for
extracting understandable rules/features from well-trained neural networks ( Andrews
et al. 1995; Saito and Nakano 2002; Setiono et al. 2002; Setiono and Liu 1996, 1997;
Taha and Ghosh 1999; Tickle et al. 1998; Tsaih et al. 1998). For instance, let f: X → Y
be the function of the trained network and y′ ≡ f (x). Relevant neural network studies
derive the following (typical) syntax rules:

If(x ∈ the kth region), then(y′ = fk(x)). (2)

The expression (x ∈ the kth region) is the premise for applying the rule, and y’ is
determined via the approximation function fk(x). An approximation of the activation
function is usually required for extracting comprehensible rules from the trained net-
work. That is, the activation function of each hidden node is approximated by either
a piecewise linear function (Setiono et al. 2002) or a multivariate polynomial func-
tion (Saito and Nakano 2002). This approach is analogous to traditional statistical
approaches such as parametric regression, which strips away nonessential details.

Adding to the literature extracting certain rules/features from well-trained neural
networks, we propose a guide for implementing abductive reasoning. For instance,

the abductive reasoning for the hypothetical feature ∂2 y
∂x2

i
> 0 is that if ∂2 y′

∂x2
i

> 0 has

high credibility, namely, it is exhibited in all networks, then this belief ∂2 y
∂x2

i
> 0 is

highly plausible. Specifically, given an odd number of well-trained real-valued single-
hidden layer feed-forward neural networks (SLFNs) with one output node, we propose
an abductive-reasoning guide whereby a finance practitioner may update his or her
beliefs regarding unconvinced-but-existing or convinced-but-absent features based on
extracted features from obtained SLFNs.

In the proposed guide, two designed procedures follow after obtaining acceptable
SLFNs. First, the rule/feature-extracting procedure provides that, for each obtained
SLFN, the area-dividing mechanism partitions the {x} space into several disjoined
regions and the feature-identifying mechanism (and partitioning mechanism) specifies
an exhibited feature at each disjoined region through an examination of the extracted
rules. Mathematical programming analysis, rather than data analysis, identifies the
exact region of each (obtained) rule premise and justifies the features exhibited at
each disjoined region. Through rigorous approximation of the activation function of
all hidden nodes, the designed rule/feature-extracting procedure focuses on fidelity,
which describes the extent to which the extracted rules mimic the behavior of a network
(Andrews et al. 1995).
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Second, the concluding procedure rates the plausibility of the practitioner’s belief
as unconvinced-but-existing or convinced-but-absent features based on the credibility
of extracted features. After the rule/feature-extraction procedure, the practitioner may
find that (i) for each SLFN, the exhibited feature either conforms to or deviates from
the listed feature and (ii) for different SLFNs, the division and the features exhibited
in the disjoined regions may be different. A concern for imperfect learning may bother
the practitioner. To address this challenge, a reasoning mechanism in the concluding
procedure consolidates the exhibited features among the different disjoined regions of
the target area and obtained SLFNs to update the practitioner’s belief. The concluding
procedure requests an accuracy that describes the extent to which the extracted rules
may be generalized.

The remaining sections of this paper are organized as follows. The next section
provides details of the proposed rule/feature-extracting procedure and concluding pro-
cedure. The following discussion presents the proposed abductive-reasoning guide to
the pricing of debt securities because the nonlinear bond pricing may be common
and more easily understood by most nonfinancial audiences than the option pricing.
Finally, the conclusion offers managerial implications and suggestions for future work.

2 Proposed Abductive-Reasoning Guide

This guide is motivated by coping with several unaddressed issues in the literature
extracting certain rules/features. First, certain scenarios may be described by the pre-
sumed regions that have few or no data observations. For instance, an investigation of
risk factors for illiquid early-issued options may produce few observations. Second,
in a single network, the exhibited feature in different disjoined regions of the target
area may be distinct; however, different networks may present distinctive features in
the same region. The practitioner needs a way to consolidate the exhibited features
among different disjoined regions of the target area and all obtained networks.

Third, to identify the premise of a single rule, most current studies use either training
data or generated data, which the trained network itself yields. Due to the countable
number of (training or generated) data instances, such a data analysis covers only a
limited number of points in the (presumed) region of the rule premise and thus leads
to deficient generalizations.

Finally, in most finance applications such as the option pricing, the best archi-
tecture of a network is characteristically difficult to determine, and therefore a local
minimum convergence in learning occurs. In addition, noises in the training samples—
for example, option prices before the introduction of Black and Scholes (1973) pricing
models—prevent perfect fittings within networks.

2.1 Neural Network and Pre-Requirements

The proposed guide can be applied to any problem with continuous variables that
has been subjected to real-valued SLFNs. For a real-valued SLFN with the activation
function tanh(t) in all hidden nodes and the linear activation function used in the output
node, let
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hj ≡ tanh

((
wH

j

)T
x + wH

j0

)
and (3)

y′ ≡ wo
0 +

p∑
j=1

+wo
j h j, (4)

where h j denotes the activation value of the j th hidden node regarding the input
x ≡ (x1, x2, . . . , xm)T; m is the number of input variables; and p is the number of
hidden nodes. wH

j0 is the bias of the j th hidden node; wH
ji is the weight between the j th

hidden node and the i th input node; wH
j ≡ (wH

j1, w
H
j2, . . . , w

H
jm)T stands for the m ×1

vector of weights between the j th hidden node and the input layer, with j ranged from 1
to p; wo

0 is the bias of the output node; and wo ≡ (wo
1, wo

2, . . . , wo
p)

T denotes the p×1
vector of weights between the output node and all hidden nodes. Hereafter, characters
in bold represent column vectors, superscript T indicates transposition, superscript H
indicates quantities related to the hidden layer, and superscript o indicates quantities
related to the output layer.

Four operative requirements exist regarding the proposed abductive-reasoning
guide:

• Requirements 1: The practitioner has an odd number of SLFNs, each of which
is perceived as well-trained. Hereafter, a well-trained SLFN satisfies the practi-
tioner’s predetermined benchmark of the forecast performance but does not nec-
essarily provide a globally optimal learning result.

• Requirements 2: Based on the practitioner’s expertise, a list of hypothetical features
accompanies each associated target area. The practitioner is interested in extract-
ing information regarding unconvinced-but-existing or convinced-but-absent fea-
tures but not in an unconvinced-and-absent feature from the obtained SLFNs. A
convinced-and-existing feature, nevertheless, helps identifying whether the SLFNs
are suitable for abductive reasoning.

• Requirements 3: The practitioner determines the order of the adopted piecewise
polynomial approximation function according to the order of each of his or her
listed feature. That is, with respect to the listed feature that depicts the nth order
(partial) differential relation, the practitioner adopts a piecewise polynomial func-
tion with a maximal power of (n + 1) to approximate the tanh function.

• Requirements 4: A (computer-generated) round-off effect exists in the tanh func-
tion and |tanh(x)| = 1 when |x | > �.3 Namely, x cannot coexist with
tanh(x) ∈ (−1, tanh(�)) ∪ (tanh(�), 1). The constant � may vary with the
level of precision of the computer simulation. For instance, in our computer sim-
ulation environment with a numerical analysis package, MATLAB (Mathworks,
Inc., Natick, MA) on PC, � is (approximately) 19.0615.

Moreover, this study focuses on the application of the proposed guide to update
the investor’s beliefs regarding features that have an nth order (partial) differential
relation with n ≥ 2, such as five hedge ratios (usually called option Greeks) of the
Black and Scholes (1973) formula. This specification distinguishes the study from

3 In fact, Requirement 4 just describe a truth in the computing.

123



416 R.-H. Tsaih et al.

other classification studies with linear settings (Baesens et al. 2003; Setiono and Liu
1997).

With respect to the listed feature that depicts the nth order (partial) differential rela-
tion, the rule/feature-extracting procedure follows Steps 1–3, and Step 4 implements
the concluding procedure:

Step 1: For each obtained SLFN, divide the target area into several disjoined
regions, at each of which exists a specific multivariate polynomial of degree (n+1)

approximating output y′4;
Step 2: For each obtained SLFN, identify the multivariate polynomial of degree
(n + 1) that approximates output y′ regarding the x at each disjoined region;
Step 3: Apply the partitioning mechanism to each obtained SLFN to further split
the region exhibiting a null feature in Step 2 into two (sub-) regions, at each of
which a specific feature definitely is exhibited; and
Step 4: Apply the reasoning mechanism to consolidate the identified features in
each disjoined region of all SLFNs and rate the plausibility of the practitioner’s
belief.

Without losing the generalization and for a full demonstration, next we take the listed

feature ∂2 y
∂x2

i
> 0, which is a positive second-order differential relation between y and

the i th explanatory variable xi , to illustrate the details of the area-dividing mechanism,
the feature-identifying mechanism, the partitioning mechanism, and the reasoning
mechanism.

2.2 Area-Dividing Mechanism

Because the listed feature is ∂2 y
∂x2

i
> 0, based on Requirements 3 and 4, we use the

following piecewise polynomial function g2̃(x) to approximate the tanh(x) function:

g2̃(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g2̃
1(x) ≡ 1 if x > 19.0615;

g2̃
2(x) ≡ 0.9965 + 0.00026x if 2.4661 ≤ x ≤ 19.0615;

g2̃
3(x) ≡ 1.1383x − 0.4464x2 + 0.0603x3 if 0 ≤ x ≤ 2.4661;

g2̃
4(x) ≡ 1.1383x + 0.4464x2 + 0.0603x3 if − 2.4661 ≤ x ≤ 0;

g2̃
5(x) ≡ −0.9965 + 0.00026x if − 19.0615 ≤ x ≤ −2.4661;

g2̃
6(x) ≡ −1 if x < −19.0615,

(5)

which is obtained from a (nonlinear) programming problem stated in (S1) of Supple-
ment and the right superscript of 2̃ indicates the order of the listed feature.5

The activation function of the j th hidden node, tanh((wH
j )Tx + wH

j0), is approxi-

mated with g2̃((wH
j )T x+wH

j0), which splits the entire {x} space into six disjoined paral-

4 Following Requirement 3 and Eq. (4), the output y′ in each disjoined region is thus approximated with
a comprehensible multivariate polynomial representation with a maximal power of (n + 1).
5 Please refer to our supplement. It is available at SSRN: http://ssrn.com/abstract=2283696.
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lel regions, as Eq. (5) shows. According to the value of net j ≡ (wH
j )T x + wH

j0 and Eq.

(5), for example, when the value of net j is greater than 19.0615, g2̃((wH
j )T x + wH

j0)

is expressed as g2̃
1(net j ) (which is set as 1).

For the j th hidden node, let the ι2̃
j function defined in Eq. (6) be the index function

denoting each of these six disjoined regions and ι2̃ ≡ (ι2̃
1, ι

2̃
2, . . . , ι

2̃
p) be the index

vector with ι2̃
j ∈ {1, 2, 3, 4, 5, 6} for every j:

ι2̃
j ≡

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 if net j > 19.0615;
2 if 2.4661 < net j ≤ 19.0615;
3 if 0 < net j ≤ 2.4661;
4 if − 2.4661 < net j ≤ 0;
5 if − 19.0615 ≤ net j ≤ −2.4661;
6 if net j < −19.0615.

(6)

Because p hidden nodes exist, the entire {x} space can be viewed as a union of 6p

regions, in which the (ι2̃)th region is specified as {x|A2̃
ι2̃

x ≥ b2̃
ι2̃
};

A2̃
ι2̃

≡

⎡
⎢⎢⎢⎢⎢⎣

γ
ι2̃1

γ
ι2̃2

...
γ

ι2̃p

⎤
⎥⎥⎥⎥⎥⎦

with γ
ι2̃j

≡

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(wH
j )T if ι2̃j = 1;[

(wH
j )T

−(wH
j )T

]
if ι2̃j = 2, 3, 4, or 5;

−(wH
j )T if ι2̃j = 6.

and (7)

b2̃
ι2̃

≡

⎡
⎢⎢⎢⎢⎢⎣

ν
ι2̃1

ν
ι2̃2

...

ν
ι2̃p

⎤
⎥⎥⎥⎥⎥⎦

with ν
ι2̃j

≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

19.0615 − wH
j0 if ι2̃j = 1;[

2.4661 − wH
j0

−19.0615 + wH
j0

]
if ι2̃j = 2;

[−wH
j0

−2.4661 + wH
j0

]
if ι2̃j = 3;

[−2.4661 − wH
j0

wH
j0

]
if ι2̃j = 4;

[−19.0615 − wH
j0

2.4661 + wH
j0

]
if ι2̃j = 5;

19.0615 + wH
j0 if ι2̃j = 6.

(8)

For practitioners, the target area (hereafter TA; regarding each listed feature) may not
be the entire {x} space and may be specified as {x|d(x) = 0, e(x) ≥ 0, x ∈ �}, in
which d(x) = 0 and e(x) ≥ 0 are functional constraints, and x ∈ � is a set constraint.
When the target area is not the entire {x} space, let the (ι2̃)th (potential) region be
{x|A2̃

ι2̃
x ≥ b2̃

ι2̃
, x ∈ TA}. Only some of 6p (potential) regions are extant. Based on

the (linear or nonlinear) nature of functional constraints, the existence of the (ι2̃)th
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(potential) region can be determined by applying either the simplex method or a
nonlinear programming technique (Luenberger 1984) to the following problem:

Minimize: constant

Subject to: A2̃
ι2̃

x ≥ b2̃
ι2̃
, x ∈ TA. (9)

Hereafter, a disjoined region is a single (extant) region obtained by solving problem
(9).

2.3 Feature-Identifying Mechanism

Given the listed feature ∂2 y
∂x2

i
> 0, if the (ι2̃)th region is extant, then the output y′ in

each disjoined region is approximated with a comprehensible multivariate polynomial
representation as follows:

If x ∈ {x|A2̃
ι2̃

x ≥ b2̃
ι2̃
, x ∈ TA}, then y′ = f 2̃

ι2̃
(x) , (10)

where f 2̃
ι2̃
(x) ≡ wo

0 + ∑p
j=1 wo

j g2̃
ι2̃j

((wH
j )T x + wH

j0). The right superscript of 2̃ and

right subscript of ι2̃ of f 2̃
ι2̃

(x) indicate that the adopted approximation function is g2̃

in the (ι2̃)th region. In the (ι2̃)th region, one of the following three relevant features
can be identified:

• the F2̃
1 feature with ∂2 y′

∂x2
i

∣∣∣∣
x∈

{
x|A2̃

ι2̃
x≥b2̃

ι2̃
,x∈TA

} > 0,

• the F2̃
2 feature with ∂2 y′

∂x2
i

∣∣∣∣
x∈

{
x|A2̃

ι2̃
x≥b2̃

ι2̃
,x∈TA

} < 0, or

• the F2̃
0 feature with a null result.

That is, the feature is maximized or minimized as

∂2 f 2̃
ι2̃

∂x2
i

≡ ∂2 y′

∂x2
i

∣∣∣∣∣
x∈

{
x|A2̃

ι2̃
x≥b2̃

ι2̃
,x∈TA

} ≡
p∑

j=1

wo
j

∂2g2̃
ι2̃j

((wH
j )Tx + wH

j0)

∂x2
i

.

Thus, the F2̃
1 feature is claimed at the (ι2̃)th region if the minimal solution to the opti-

mization problem (11) is positive; the F2̃
2 feature is claimed if the maximal solution to

the problem (12) is negative; and the F2̃
0 feature is claimed if neither a positive minimal

or a negative maximal solution is obtained to problem (11) or (12), respectively.
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Minimize:
∂2 f 2̃

ι2̃

∂x2
i

Subject to: A2̃
ι2̃

x ≥ b2̃
ι2̃
, x ∈ TA (11)

Maximize:
∂2 f 2̃

ι2̃

∂x2
i

Subject to: A2̃
ι2̃

x ≥ b2̃
ι2̃
, x ∈ TA. (12)

2.4 Partitioning Mechanism

For any disjoined region exhibiting a null result, the following partitioning mechanism
further partitions it into two (sub-) regions, each of which exhibits a definite feature.
For instance, assume the (ι2̃)th region {x|A2̃

ι2̃
x ≥ b2̃

ι2̃
, x ∈ TA} exhibits the F2̃

0 feature

regarding the listed feature ∂2 y
∂x2

i
> 0. With Requirement 3, the maximal power of the

polynomial representation of f 2̃
ι2̃

is 3. Thus,
∂2 f 2̃

ι2̃

∂x2
i

is either a constant or a linear func-

tion. A null result is impossible in the (ι2̃)th region when
∂2 f 2̃

ι2̃

∂x2
i

is a constant. However,

when
∂2 f 2̃

ι2̃

∂x2
i

is a linear function, the region {x|A2̃
ι2̃

x ≥ b2̃
ι2̃
, x ∈ TA} can be treated as a

union of the following three disjoined (sub-) regions: {x|A2̃
ι2̃

x ≥ b2̃
ι2̃
, x ∈ TA,

∂2 f 2̃

ι2̃

∂x2
i

<

0}, {x|A2̃
ι2̃

x ≥ b2̃
ι2̃
, x ∈ TA,

∂2 f 2̃

ι2̃

∂x2
i

> 0}, and {x|A2̃
ι2̃

x ≥ b2̃
ι2̃
, x ∈ TA,

∂2 f 2̃

ι2̃

∂x2
i

= 0}. Note

that the F2̃
1 feature appears at {x|A2̃

ι2̃
x ≥ b2̃

ι2̃
, x ∈ TA,

∂2 f 2̃

ι2̃

∂x2
i

> 0} and the F2̃
2 feature

appears at {x|A2̃
ι2̃

x ≥ b2̃
ι2̃
, x ∈ TA,

∂2 f 2̃

ι2̃

∂x2
i

< 0}.

2.5 Reasoning Mechanism

Given Requirement 1, the practitioner should have an odd number of well-trained
SLFNs serving as a stabilization measure to the conclusion of extracted features.

For each obtained SLFN, the exhibited feature ∂2 y′
∂x2

i
in each disjoined region either

conforms to or deviates from the listed feature ∂2 y
∂x2

i
> 0. To consolidate the exhibited

features ∂2 y′
∂x2

i
among all obtained SLFNs, the following three types of areas of each

listed feature are first identified:
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• The consistent area (CA): the union of areas in which all obtained SLFNs exhibit
the conforming feature without exception.

• The accordant inconsistent area (AIA): the union of areas in which all obtained
SLFNs exhibit the deviated feature without exception.

• The discordant area (DA): the union of areas in which some SLFNs exhibit the
conforming feature and the others exhibit the deviated feature.

After identifying these three different areas, we consolidate the exhibited features
among all obtained SLFNs as follows:

1. Strongly conclude that the feature ∂2 y′
∂x2

i
> 0 appears in each CA;

2. Strongly conclude that the feature ∂2 y′
∂x2

i
< 0 appears in each AIA; and

3. For each DA, exhaustively count the number of obtained SLFNs with the exhibited
features F2̃

1 and F2̃
2 and then use the percentage of these two numbers to derive a

(credible) feature. Accordingly, the consolidating scenarios are as follows:

(i) Conclude that the feature ∂2 y′
∂x2

i
> 0 appears in the DA if its derived (credible)

feature is F2̃
1.

(ii) Conclude that the feature ∂2 y′
∂x2

i
< 0 appears in the DA if its derived (credible)

feature is F2̃
2.

Then, we rate the plausibility of the prior belief regarding the listed feature ∂2 y
∂x2

i
> 0

in its associated entire target areas as follows:

1. If the CA equals the entire target area, the practitioner’s prior belief is rated as
having the highest plausibility.

2. If the AIA and the DA do not exhibit the derived feature F2̃
2, the outcome pro-

vides weak support of the practitioner’s prior belief, which is rated as having high
plausibility.

3. If the AIA does not equal the entire target area or the DA contains the derived
feature F2̃

2, the prior belief is rated as having low plausibility.
4. If the AIA equals the entire target area, the practitioner’s prior belief is rated as

having the lowest plausibility.

Finally, if the convinced-and-existing feature is rated with the highest (or high)
plausibility, the practitioner may claim that the adopted approximation function is
acceptable. Otherwise, the practitioner may claim either that the adopted approxi-
mation function g is unacceptable or that the obtained SLFNs are not useful in the
abductive-reasoning exercise.

2.6 Derivation of the First-Order Features

We take the listed feature ∂y
∂xi

> 0 to illustrate. With this listed feature, the same
steps in the rule/feature-extracting procedure are applied, except that the adopted
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approximation function is g1̃, as the following, instead of g2̃.6 Furthermore, F1̃
0, F1̃

1,

and F1̃
2 denote the counterparts corresponding to F2̃

0, F2̃
1, and F2̃

2, respectively.

g1̃ (x) ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

g1̃
1(x) ≡ 1 if x > 19.0615;

g1̃
2(x) ≡ 0.9908 + 0.00067x if 1.9643 ≤ x ≤ 19.0615;

g1̃
3(x) ≡ 1.0098x − 0.2569x2 if 0 ≤ x ≤ 1.9643;

g1̃
4(x) ≡ 1.0098x + 0.2569x2 if −1.9643 ≤ x ≤ 0;

g1̃
5(x) ≡ −0.9908 + 0.00067x if −19.0615 ≤ x ≤ −1.9643;

g1̃
6(x) ≡ −1 if x < −19.0615,

(13)

3 Demonstration of the Abductive-Reasoning Guide

In the section, we train the networks with the data set of Treasury bond prices for the
demonstration. In Treasury bond market (hereafter, “Treasury” is ignored), the prices
are almost dominated by the sum of the discounted cash flows of bonds, which is
a well-defined formula. Therefore, we use the simulated bond prices instead of the
historical bond prices. That makes us to demonstration the abductive-reasoning effect
in a well-control environment, which is almost the same as the real market. To confirm
this point, we also examine the performance of the trained network using the historical
bond prices from the website of The Wall Street Journal.

3.1 Design of Demonstration

To simulate the set of data that may be observed by a representative practitioner who
knows the bond-pricing mechanism well (but less than perfectly), we generate and use
garbled training samples of bond price yt = pt + εt . pt is the theoretic value of the
bond at time t and is derived from Eq. (14), which serves as an example of complete
domain knowledge with respect to the bond pricing model, and εt is a white error
term provided by a normal random number generator of N (0, (0.2)2). Namely, yt is
perturbed by a white noise.

pt ≡
T0∑

k=1

C

(1 + rt )k−t
+ F

(1 + rt )T0−t
. (14)

According to Eq. (14), pt is determined by (i) rt , the market rate of interest at time
t; (ii) F, the face value of the bond, which generally equals 100; (iii) T0, the term to
maturity at time t = 0; and (iv) C, the periodic coupon payment, which equals F ×rc.
Table 1 shows the 18 hypothetical combinations of term to maturity and contractual
interest rate that we use to generate a set of price data with t = 1/80, 2/80, . . ., 80/80
through Eq. (14). The rate rt is derived from a normal random number generator of
N (2 %, (0.1 %)2). Accordingly, we have 1,440 training samples with input variables

6 Please refer to our supplement. It is available at SSRN: http://ssrn.com/abstract=2283696.
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Table 1 The 18 hypothetical bonds with different combinations of term to maturity and contractual interest
rate

Bond no. Term to
maturity
(T0)

Contractual
interest rate
(rc) (%)

Bond no. Term to
maturity
(T0)

Contractual
interest rate
(rc) (%)

Bond no. Term to
maturity
(T0)

Contractual
interest rate
(rc) (%)

1 2 0.0 7 2 1.5 13 2 3.0

2 4 0.0 8 4 1.5 14 4 3.0

3 7 0.0 9 7 1.5 15 7 3.0

4 10 0.0 10 10 1.5 16 10 3.0

5 15 0.0 11 15 1.5 17 15 3.0

6 20 0.0 12 20 1.5 18 20 3.0

The contractual coupon payments are assumed to be made annually

Tt , rc, and rt , and the desired output variable yt , where Tt ≡ (T0 − t) is the term to
maturity at time t. The range of the sample training data is

{x ≡ (Tt , rc, rt )
T |(1 ≤ Tt ≤ 20), (0 ≤ rc ≤ 0.030), and (0.017 ≤ rt ≤ 0.024)}.

To examine the generalization of trained networks, we also adopt 1,440 test samples
by similar means except that T0, t, rc, and rt are randomly and independently generated
from {1, 2, …, 20} with a probability of 5 % for each, {1/80, 2/80, …, 80/80} with a
probability of 1.25 % for each, [0.0, 3.0 %] with a probability density function f (rc) =
1/0.03, and N (2 %, (0.1 %)2), respectively. This setting results in varying instances
among the test samples.

We, as the representative practitioner, adopt the back-propagation learning algo-
rithm (Rumelhart et al. 1986) to train 1,000 SLFNs, each of which has four hidden
nodes and random initial weights and biases. Among the 1,000 SLFNs, we pick the
three with the smallest mean square error (MSE) for the test samples. Table 2 shows
the (final) weights and biases of these three SLFNs, hereafter named Networks I,
II and III. The corresponding MSEs for the training samples are 0.414, 0.404, and
0.451, respectively; and the corresponding MSEs for the test samples are 0.429, 0.432,
and 0.445, respectively. The average absolute deviation is approximately 0.6, which
deviates from the specified error term standard deviation of 0.2. The pricing error is
unrelated to theoretic prices pt but related to observed prices yt .

We obtain the U.S. Treasury Quotes from the website of The Wall Street Journal
for the first trading day of each month in 2010. There are 2,462 Treasury bond quotes
and we further select the 141 bond quotes, which are similar to the aforementioned
settings. Then, we obtain the estimated prices from Network II. We plot the real
prices and estimated prices in Fig. 1a. It shows that the Network II works well for
the real historical bond prices. In fact, in Fig. 1b, Network II also displays a positive
relationship between real and estimated prices for all 2,462 observations, including
the ones not meeting the simulated settings.

Assume that we are interested in shorter-termed premium bonds with (1 ≤ Tt ≤
10) and (rc > rt ), and with the following five (listed) features: (i) ∂2 yt

∂Tt ∂rc
> 0; (ii)
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Table 2 Final weights and biases of Networks I, II and III

Network Weights and biases

wo
0 j wH

j0 wo
j wH

j1 wH
j2 wH

j3

I 100.4744 1 −0.1689 15.1206 −0.0347 −32.7223 18.8396

2 −1.3535 −34.3660 0.0544 −36.8286 28.9551

3 −2.1615 5.6589 0.0988 43.3354 16.8267

4 1.1698 −21.9999 −0.0643 −36.4188 53.6646

II 93.6583 1 0.4510 −23.3874 −0.0571 −33.4648 71.8090

2 0.8413 36.9871 −0.0467 32.9078 −10.5926

3 −1.1572 −10.4621 0.0699 45.5792 43.2855

4 1.2874 −9.2684 −0.0458 17.5685 −87.3147

III 104.8248 1 0.7832 −14.0352 −0.0519 −27.1299 49.3836

2 1.3108 −16.7297 −0.0571 −27.3748 14.5874

3 −1.5287 −30.1819 0.0631 −37.1108 33.3026

4 −0.6010 13.1504 −0.0524 −34.9042 36.9149

wo
0 denotes the bias of the output node; wH

j0 denotes the bias of the j th hidden node; wo
j denotes the weight

between the output node and the j th hidden node; and wH
ji denotes the weight between the j th hidden node

and the i th input node

∂2 yt
∂rt ∂rc

< 0; (iii) ∂2 yt

∂r2
t

> 0; (iv) ∂yt
∂Tt

> 0; and (v) ∂yt
∂rt

< 0. Their associated target areas

are the same:

TA={x ≡ (Tt , rc, rt )
T |(1 ≤ Tt ≤10), (rc >rt ) , (0 ≤ rc ≤ 0.030), and (0.017≤rt ≤0.024)}.

(15)

Note that this target area only covers 320 of the 1,440 training samples, which means
that some of disjoined regions obtained from the rule-extracted mechanism may have
few or no observations.

To illustrate the complexity of extracting features from the obtained SLFNs, we
adopt the preimage analysis proposed by Tsaih and Wan (2009) for Network II and
its preimage-related properties.7 The preimage f −1(y′) = {x| f (x) = y′} is the set in
the {x} space for a given y’. As shown in Fig. 2, the preimage f −1(y′) consists of one
(or several) complex two-manifold segments in R3.8

Before extracting rules/features, we also examine the effect of the approximation
functions in the Fig. 3. It appears that the approximation function has the same per-
formance as the SLFN for the bond pricing.

7 Please refer to our supplement. It is available at SSRN: http://ssrn.com/abstract=2283696.
8 A p-manifold is a Hausdorff space X with a countable basis such that each point x of X has a neighborhood
that is homomorphic with an open subset of 	p (Munkres 1975). A one-manifold is often called a curve,
and a two-manifold is called a surface.
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Fig. 1 The performance of Network II for the history bond prices from the website of The Wall Street
Journal. The 144 in sample observations are in (a) and the all 2,462 bond quotes are in (b)

3.2 Illustrating the Rule/Feature-Extracting Procedure

Without losing the generalization and for a full demonstration, we take the listed fea-

ture ∂2 yt
∂rc∂rt

> 0 and Network II to demonstrate the rule/feature-extracting procedure.
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Fig. 2 The preimage graph of Network II. The legend shows the values of y′ in parentheses
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Fig. 3 The performance of the approximation function g2̃. a is the scatter of SLFN estimates and the
simulated prices; b is the scatter of approximated estimates and the prices. Both display similar performances

To do this, we solve optimization problem (16) to examine whether the (ι2)th (poten-
tial) region regarding Network II is extant.

Minimize: constant

Subject to: A2̃
ι2̃

x ≥ b2̃
ι2̃
, x ≡ TA, (16)

123



426 R.-H. Tsaih et al.

in which, according to Eqs. (10) and (11), A2̃
ι2̃

and b2̃
ι2̃

can be derived from Table 2.
For instance, regarding the (3, 3, 3, 4) region of the Network II,

A2̃
(3,3,3,4) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.0571 −33.4648 71.8090
0.0571 33.4648 −71.8090

−0.0467 32.9078 −10.5926
0.0467 −32.9078 10.5926
0.0699 45.5792 43.2855

−0.0699 −45.5792 −43.2855
−0.0458 17.5685 −87.3147

0.0458 −17.5685 87.3147

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and b2̃
(3,3,3,4) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.4510
−2.0152
−0.8413
−1.6248

1.1572
−3.6234
−3.7536

1.2874

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The output y′ associated with the (ι2̃)th region regarding Network II is approximated
with f 2̃

ι2̃
(x) ≡ 93.6583−23.3874 g2̃

ι2̃1

(net1)+36.9871g2̃
ι2̃2

(net2)−10.4621g2̃
ι2̃3

(net3)−
9.2684 g2̃

ι2̃4

(net4). Then, we solve problems (13) and (14) to verify the exhibited feature

at the (ι2̃)th disjoined region:

Minimize:
∂2 f 2̃

ι2̃

∂rc∂rt

Subject to: A2̃
ι2̃

x ≥ b2̃
ι2̃
, x ∈ TA; (17)

Maximize:
∂2 f 2̃

ι2̃

∂rc∂rt

Subject to: A2̃
ι2̃

x ≥ b2̃
ι2̃
, x ∈ TA. (18)

At this stage in the process, this rule/feature-extracting procedure concludes for a listed
feature if no null results appear. If one or more null results occur, we then continue
to apply the partitioning mechanism to these results. For instance, numerically, a null
result appears in the (3, 3, 3, 4) region of the Network II. Accordingly, we further
partition the (3, 3, 3, 4) region into the following two sub-regions that exhibit F2̃

1

and F2̃
2 features, respectively: {x|A2̃

(3,3,3,4)x ≥ b2̃
(3,3,3,4), x ∈ TA,

∂2 f 2̃
(3,3,3,4)

∂rc∂rt
> 0} and

{x|A2̃
(3,3,3,4)x ∈ b2̃

(3,3,3,4), x ∈ TA,
∂2 f 2̃

(3,3,3,4)

∂rc∂rt
< 0}.

Table 3 shows the results of applying the rule/feature-extracting produce to listed

features of ∂2 yt
∂Tt ∂rc

> 0,
∂2 yt

∂rt ∂rc
< 0, and ∂2 yt

∂r2
t

< 0 in terms of Networks I, II, and

III. In Table 3 and hereafter, Rn
i,ι2̃

denotes the (ι2̃)th region regarding Network i ,

in which i ∈ {I, II, III}, with the right superscript n indicating the order of the

listed feature. We divide the target region of the listed feature ∂2 yt
∂Tt ∂rc

> 0 in Net-

work I into two disjoined regions, each of which exhibits the same feature ∂2 y′
∂Tt ∂rc

>

0. We also divide the target region of the listed feature ∂2 yt
∂Tt ∂rc

> 0 in Network II
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Table 3 The rule/feature-extracting results

Network ∂2 yt
∂Tt ∂rc

> 0 ∂2 yt
∂rt ∂rc

< 0 ∂2 yt
∂r2

t
< 0

Region Exhibited
feature

Region Exhibited
feature

Region Exhibited
feature

I R2̃
I,(4,4,3,3)

F2̃
1 R{2}

I,(4,4,3,3)
F2̃

2 R2̃
I,(4,4,3,3)

F2̃
2

R2̃
I,(4,4,4,3)

F2̃
1 R2̃

I,(4,4,4,3)
F2̃

2 R2̃
I,(4,4,4,3)

F2̃
2

II R2̃
II,(3,3,3,3)

F2̃
1 R2̃

II,(3,3,3,3)
F2̃

2 R2̃
II,(3,3,3,3)

F2̃
2

R2̃
II,(3,3,3,4)

F2̃
1 R2̃

II,(3,3,3,4)

∣∣∣ ∂2 y′
∂rc∂rt

>0
F2̃

1 R2̃
II,(3,3,3,4)

F2̃
2

R2̃
II,(3,3,3,4)

∣∣∣ ∂2 y′
∂rc∂rt

<0
F2̃

2

III R2̃
III,(3,3,4,4)

F2̃
1 R2̃

III,(3,3,4,4)
F2̃

2 R2̃
III,(3,3,4,4)

F2̃
2

This table provides the results of applying the rule/feature-extracting procedure to listed features of ∂2 yt
∂Tt ∂rc

>

0, ∂2 yt
∂rt ∂rc

< 0, and ∂2 yt
∂r2

t
< 0. The right superscript of 2̃ corresponds to the second-order differential relation

depicted in the listed feature. For region, R2̃
i,ι2̃

denotes the (ι2̃)th sub-region regarding network I, in which

i ∈ {I, II, III}. R2̃
i,ι2̃

|a given feature denotes the sub-region of R2̃
i,ι2̃

that exhibits the given feature. For the

exhibited feature, F2̃
1 and F2̃

2 denote the exhibited feature in the region. Right subscripts 1 and 2 indicate a
positive or a negative differential relation, respectively

into two disjoined regions, each of which exhibits the same feature ∂2 y′
∂Tt ∂rc

> 0.

The target region of the listed feature ∂2 yt
∂Tt ∂rc

> 0 in Network III has only one (dis-

joined) region that exhibits the feature ∂2 y′
∂Tt ∂rc

> 0. Similar summarization can be

applied to the target region of the listed feature ∂2 yt

∂r2
t

< 0 for Networks I, II, and

III.
For the listed feature ∂2 yt

∂rt ∂rc
< 0, we divide the target region in Network I

into two disjoined regions, each of which exhibits the same feature ∂2 y′
∂rt ∂rc

<

0. We divide the target region in Network II into three disjoint regions, in

which R2̃
II,(3,3,3,4)

∣∣∣
∂2 y′

∂rc∂rt
>0

and R2̃
II,(3,3,3,4)

∣∣∣
∂2 y′

∂rc∂rt
<0

denotes the two sub-regions of

R2̃
II,(3,3,3,4)

, exhibiting ∂2 y′
∂rt ∂rc

> 0 and ∂2 y′
∂rt ∂rc

< 0, respectively. The target region

in Network III has only one (disjoined) region that exhibits the feature ∂2 y′
∂rt ∂rc

<

0.
Table 4 shows the results of applying the rule/feature-extracting produce to the

listed features ∂yt
∂Tt

> 0 and ∂yt
∂rt

< 0 in terms of Networks I, II, and III. We divide the

target region of the listed feature ∂yt
∂Tt

> 0 in Network I into three disjoined regions,

two of which exhibit the feature ∂y′
∂Tt

> 0. We divide the target region of the listed

feature ∂yt
∂Tt

> 0 in Network II into four disjoined regions, two of which exhibits

the same feature ∂y′
∂Tt

> 0. Finally, we divide the target region of the listed feature
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Table 4 The rule/feature-extracting results to listed features of ∂yt
∂Tt

> 0 and ∂yt
∂rt

< 0

Network ∂yt
∂Tt

> 0 ∂yt
∂rt

< 0

Region Exhibited feature Region Exhibited feature

I R1̃
I,(4,4,3,3)

F1̃
1 R1̃

I,(4,4,3,3)
F1̃

2

R1̃
I,(4,4,4,3)

∣∣∣ ∂y′
∂Tt

>0
F1̃

1 R1̃
I,(4,4,4,3)

F1̃
2

R1̃
I,(4,4,4,3)

∣∣∣ ∂y′
∂Tt

<0
F1̃

2

II R1̃
II,(3,3,3,3)

∣∣∣ ∂y′
∂Tt

>0
F1̃

1 R1̃
II,(3,3,3,3)

F1̃
2

R1̃
II,(3,3,3,3)

∣∣∣ ∂y′
∂Tt

<0
F1̃

2

R1̃
II,(3,3,3,4)

∣∣∣ ∂y′
∂Tt

>0
F1̃

1 R1̃
II,(3,3,3,4)

F1̃
2

R1̃
II,(3,3,3,4)

∣∣∣ ∂y′
∂Tt

<0
F1̃

2

III R1̃
III,(3,3,4,4)

∣∣∣ ∂y′
∂Tt

>0
F1̃

1 R1̃
III,(3,3,4,4)

F1̃
2

R1̃
III,(3,3,4,4)

∣∣∣ ∂y′
∂Tt

<0
F1̃

2

R1̃
III,(3,3,5,4)

F1̃
1 R1̃

III,(3,3,5,4)
F1̃

2

This table provides the results of applying the rule/feature-extracting procedure to listed features of ∂yt
∂Tt

>

0 and ∂yt
∂rt

< 0. The right superscript of 1 corresponds to the first-order differential relation depicted in

the listed feature. For region,R1̃
i,ι1̃

denotes the (ι1̃)th region with respect to Network I, in which i ∈ {I,

II, III}. R1̃
i,ι1̃

∣∣∣∣
a given feature

denotes the sub-region of R1̃
i,ι1̃

that exhibits the given feature. For exhibited

feature, F1̃
1 and F1̃

2 denote the exhibited feature in the region. Right subscripts 1 and 2 indicate a positive or
a negative differential relation, respectively

∂yt
∂Tt

> 0 in Network III into three disjoined regions, two of which exhibit the feature
∂y′
∂Tt

> 0. For the listed feature ∂yt
∂rt

< 0, each of the target regions in Networks I, II,

and III is divided into two disjoined regions, all of which exhibit the feature ∂y′
∂rt

<

0.

3.3 Illustrating the Reasoning Mechanism

With well-established first and second-order features ∂yt
∂rt

<0 and ∂2 yt

∂r2
t

>0, the practi-

tioner can examine the approximation functions g1̃ and g2̃, separately. According to

Tables 3 and 4, the CA for each of the listed features ∂yt
∂rt

< 0 and ∂2 yt

∂r2
t

> 0 equals

the entire target area, and thus they both rate as the highest plausibility. Accordingly,
the practitioner may conclude that the obtained SLFNs and the adopted g1̃ and g2̃

approximation functions are suitable for abductive reasoning.
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Table 3 shows that the CA regarding the listed feature ∂2 yt
∂Tt ∂rc

> 0 equals the entire
target area. Accordingly, these three networks strongly support the practitioner’s prior

belief of ∂2 yt
∂Tt ∂rc

> 0. Namely, the experiment leads to the highest plausibility rating for
the practitioner’s belief that longer termed premium bonds have a higher premium.

However, for the listed feature ∂2 yt
∂rt ∂rc

< 0, the CA equals R2̃
II,(3,3,3,3) ∪

R2̃
II,(3,3,3,4)| ∂2 y′

∂rc∂rt
<0

and the DA equals R2̃
II,(3,3,3,4)| ∂2 y′

∂rc∂rt
>0

, in which two-thirds of the

votes support the high credibility of feature ∂2 y′
∂rt ∂rc

< 0, suggesting that the prior belief
∂2 yt

∂rt ∂rc
< 0 is highly plausible in this DA. Namely, the practitioner’s belief that a bond

price decrease that is accompanied by an increase in the market yield will be greater
if the coupon rate is higher rates as high plausibility in its associated target area.

An interesting observation in Table 4 is that the AIA of the listed feature ∂yt
∂Tt

>0

equals R1̃
I,(4,4,4,3)

∣∣∣
∂y′
∂Tt

<0
∩
(

R1̃
II,(3,3,3,3)

∣∣∣
∂y′
∂Tt

<0
∪ R1̃

II,(3,3,3,4)

∣∣∣
∂y′
∂Tt

<0

)
∩R1̃

III,(3,3,4,4)

∣∣∣
∂y′
∂Tt

<0
.

Such an AIA rates with low plausibility the prior belief ∂yt
∂Tt

∣∣∣
x∈{ x|rc>rt }

> 0, which

is derived from the perspective of the literature on bonds. ∂yt
∂Tt

∣∣∣
x∈{ x|rc>rt }

> 0 states

that if bond yield remains constant over its life, then the magnitude of the premium
will decrease as its term to maturity becomes shorter. The low plausibility for the

prior belief of ∂yt
∂Tt

∣∣∣
x∈{ x|rc>rt }

> 0 leads to an examination of this listed feature and

the obtained SLFNs. We find that the theoretical bond-pricing function is a segment
function with a boundary {x|rc = rt }. Specifically, ∂yt

∂Tt
is positive for premium bonds

(rc > rt ) and negative for discount bonds (rc < rt ). Also, using a single SLFN to learn
simultaneously and successfully two different functions across the boundary line is
prohibitively difficult. With further numerical examinations, we find that, regarding

these three obtained SLFNs, the AIA of ∂y′
∂Tt

∣∣∣
x∈{ x|rc−rt >0.00175} > 0 is null.

4 Conclusion and Managerial Implications

This study adds to the literature by introducing an abductive-reasoning guide for
finance applications with SLFNs. With the proposed procedure, the practitioner may
gain insights from obtained SLFNs for any unexplored data without knowing the most
suitable tools for analysis because the SLFN is known for its ability as a universal
approximator. The proposed concluding procedure helps the practitioner to consolidate
the exhibited features among different disjoined regions of the target area and all
obtained SLFNs as well as rate the plausibility of prior beliefs regarding unconvinced-
but-existing or convinced-but-absent features. That is, after observing the extracted
feature A′ from obtained SLFNs, we abduce the hypothetical feature A from the
circumstance A′ and further to surmise that A may be true because then A′ would be a
matter of course. To abduce A robustly from A′ involves determining that A is sufficient
(or nearly sufficient) but not necessary for A′. To develop robust abductive-reasoning
skills and experiences is left for future research.
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Table 5 The number of training samples contained in each disjoined region of Networks I, II and III,

respectively, when the adopted approximation function is g1̃ shown in (S3) of Supplement

Region R1̃
I,(4,4,3,3)

R1̃
I,(4,4,4,3)

R1̃
II,(3,3,3,3)

R1̃
II,(3,3,3,4)

R1̃
III,(3,3,4,4)

R1̃
III,(3,3,5,4)

Number of
contained
training samples

160 160 46 274 319 1

Only 320 of the 1,440 training samples are covered in the target area

We also demonstrate the appropriateness of adopting mathematical programming
analysis in place of the data analysis (i) to identify the premise of each multivariate
polynomial rule and (ii) to verify the features exhibited in each disjoined region.
With mathematical programming analysis, both rules and features can be verified,
for instance, in the R1̃

III,(3,3,5,4)
shown in Table 5, a region with few or no (training)

observations.
Note that the practitioner will usually accord his or her prior belief high plausibility

when a consistent outcome is obtained from the proposed abductive-reasoning guide.
Conversely, an inconsistent outcome will normally trigger a reexamination of the
practice instead of an immediate revision of the prior belief. The practitioner may

(i) examine whether some of the obtained well-trained SLFNs are not globally optimal
to the extent that they are unsuitable for the purpose of revising the prior beliefs,
or

(ii) investigate whether certain factors or noises may cause the design of the SLFN to
be inadequate.

Only after considering and eliminating these alternative explanations will the practi-
tioner update his or her prior belief. Otherwise, he or she should use the outcome from
the proposed abductive-reasoning guide conservatively.

The proposed guide can be applied to any listed feature with a higher order differ-
ential relation. The extracted feature can describe the differential relation with social
scientific application concerns. Thus, a possible future avenue of further inquiry may
be the exploration of a social scientific application using the proposed process set out
here.

Another interesting avenue for further study is the application of the proposed
abductive-reasoning guide for different fields; for instance, to price future exotic
options, researchers may adopt a Morte Carlo simulation. Using the simulated present
values of options and the abductive-reasoning process, the practitioner may enhance
his or her understanding or derive a useful pricing model. Another avenue of study
may be the elimination of redundant constraints from the premise of a rule or the
integration of extracted rules. Moreover, if the practitioner is only interested in finding
out the highest or the lowest credible feature (i.e., checking whether the entire target
area is CA or AIA for a listed feature), the skills of piecewise linear programming
(ref. Cavichia and Arenales 2000; Rozvany 1971) may improve the performance of
the abductive-reasoning guide.
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