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Abstract The validation of causal relationship between two groups of multivariate
time series data often requires the precedence knowledge of all variables. How-
ever, in practice one finds that some variables may be negligible in describing the
underlying causal structure. In this article we provide an explicit definition of “non-
informative variables” in a two-group causal relationship and introduce various auto-
matic computer-search algorithms that can be utilized to extract informative variables
based on a hypothesis testing procedure. The result allows us to represent a simpli-
fied causal relationship by using minimum possible information on two groups of
variables.

Keywords Causal relationship · Vector autoregression model · Informative
variables · Modified Wald test · Automatic computer-search algorithm

1 Introduction

Over the years the causality system described by the multivariate time series process
has been one of the most flexible and popular statistical techniques to measure the
dynamic relationships between groups of variables in the areas of economics, finance,
medicine, science, and engineering. The primary study of causal relationships can
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1152 Y.-C. Hung, N.-F. Tseng

date back to the work by Granger (1969), wherein the vector autoregression (VAR)
model, which is a generalization of the univariate AR models, was used to identify
the “causality” between two groups of time series data based on precedence and
predictability. Afterward, there exists a fairly rich literature on its extensive studies.
Some remarkable works are: Granger (1980) proposed a statistical hypothesis testing
procedure to validate the bivariate causal relationship; Osborn (1984) discussed about
“Unidirectional Granger Causality” based on the ARMA model and probed it into a
statistical hypothesis testing procedures; Geweke (1982, 1984) considered measures
of linear dependence and feedback between multiple time series data and provided a
comprehensive literature survey of Granger-causality; Boudjellaba et al. (1992) tested
causality between two vectors in multivariate autoregressive moving average models;
Granger and Lin (1995) talked about the measure of causality by using the spectral
decomposition based on the vector error correction model (VECM); Mosconi and
Giannine (1992) investigated the Granger causality based on a non-stationary VAR
model; Roebroech et al. (2005) used the Granger causality mapping (GCM) to explore
directed influences between neuronal populations in fMRI data; Hacker and Hatemi
(2006) developed a method that is not sensitive to deviations from the assumption that
the error term is normally distributed; Fujita et al. (2007) proposed an improved VAR
model (called DVAR) to estimate time-varying gene regulatory networks based on
gene expression profiles obtained from microarray experiments; Haufe et al. (2010)
estimated causal interactions in multivariate time series using the VAR model; just to
name a few.

The study of causal relationships usually include all variable information in the
analysis. However, in many practical situations one finds that some variables are not
particularly informative and can mislead the interpretation of the underlying causal
structure. The work by Hsiao (1982) was closely related to such a concept. He intro-
duced three different types of causal relationships (called direct, indirect, and spurious
causality) by reducing the information set in a three-variate time series model. How-
ever, when the number of variables becomes large, it is a much harder task to char-
acterize all the causal patterns due to model complexity. To overcome this problem,
some graphical techniques have been successfully developed to identify and visualize
the causal relationships between the components of multivariate time series data. The
readers can refer to the works by Koster (1996, 1999), Lauritzen (1996, 2000), Pearl
(1995, 2000), Whittaker (1990), and Arnold et al. (2007) for this type of approaches.

The goal of this study is to extract informative variables in the validation of causal
relationship between two groups of multivariate time series data. These extracted
variables are important and useful in the sense that it allows us to forecast the future
quantity of explicit variables by utilizing the minimum data information. The remain-
der of this paper is organized as follows. In Sect. 2, we introduce some background
knowledge required for defining and identifying informative variables in the validation
of two-group causal relationship. In Sect. 3, we introduce how to extract all informative
variables by utilizing a hypothesis testing procedure (called the modified Wald test)
and various automatic computer-search algorithms. In Sect. 4, the computer-search
algorithms are illustrated on a real example. Some concluding remarks are given in
Sect. 5.
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Extracting informative variables 1153

2 Background knowledge

The notion of causality in multivariate time series data is often discussed by the
stationary pth-order VAR model (denoted by VAR(p)):

Wt = b +
p∑

j=1

A j Wt− j + at , t = 1, . . . , T, (1)

where b is a (K × 1) constant vector, Wt = (W1,t , W2,t , . . . , WK ,t )
′ is a (K × 1)

random vector, A j is a (K × K ) coefficient matrix for all j = 1, . . . , p, and at is
a (K × 1) error (or noise) vector satisfying that (i) E(at ) = 0; (ii) the covariance
matrix E(at a′

t ) is positive definite (thus non-singular); and (iii) E(at a′
t−k) = 0 for

any non-zero k. Dividing all the variables of interest into two groups Xt and Yt , we
see that Wt can be further represented as

Wt =
(

Xt

Yt

)
=

(
b1
b2

)
+

p∑

j=1

(
AX X, j AXY, j

AY X, j AY Y, j

) (
Xt− j

Yt− j

)
+

(
aX,t

aY,t

)
, t = 1, . . . , T,

(2)

where Xt = (X1,t , . . . , Xn,t ) and Yt = (Y1,t , . . . , Ym,t ) are (n × 1) and (m × 1)

random vectors, b1 and b2 are (n × 1) and (m × 1) constant vectors, AX X, j , AXY, j ,
AY X, j , and AY Y, j are sub-matrices of A j with orders (n × n), (n × m), (m × n), and
(m ×m), respectively, aX,t and aY,t are (n ×1) and (m ×1) error vectors. The primary
goal of the so-called “Granger causality” is to examine whether or not the time series
Yt is useful in forecasting the time series Xt .

Given any point in time t , let us consider the two information sets

ΩXY = {X1,t , . . . , Xn,t , . . . , X1,1, . . . , Xn,1, Y1,t , . . . , Ym,t , . . . , Y1,1, . . . , Ym,1}

and

ΩX = {X1,t , . . . , Xn,t , . . . , X1,1, . . . , Xn,1}.

For any given future time (t +h), we denote the best linear predictor of Xt+h based
on the information sets ΩXY and ΩX by

X̂t (h|ΩXY ) = (X̂1,t (h|ΩXY ), . . . , X̂n,t (h|ΩXY ))

and

X̂t (h|ΩX ) = (X̂1,t (h|ΩX ), . . . , X̂n,t (h|ΩX ),

respectively. The two-group causality (also known as generalization of Granger
causality) is defined as follows.
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Definition 1 (Two-group Causality up to Horizon c) Given any positive integer c, if
X̂t (h|ΩX ) �= X̂t (h|ΩXY ) for some h ≤ c, then we say that Yt causes Xt up to horizon
c and denote it by Y →

(c)
X . On the other hand, if X̂t (h|ΩX ) = X̂t (h|ΩXY ) for all

h ≤ c, then we say that Yt does not cause Xt up to horizon c and denote it by Y �

(c)
X .

The following proposition is useful for identifying the causality/non-causality
between Xt and Yt .

Proposition 1 Based on the model in Eqs. (1)–(2), for any positive integer c we have
that Y �

(c)
X if and only if AXY, j = 0n×m for all j = 1, . . . , p.

Proof Since we know that Y �

(c)
X is equivalent to Y �

(∞)
X (see Dufour and Renault

(1998), Proposition 2.3) and Y �

(∞)
X if and only if AXY, j = 0n×m for all j = 1, . . . , p

(see Lütkepohl 2005, Corollary 2.2.1), the result is simply obtained. ��
Proposition 1 indicates that the two-group causality based on the VAR model can be

determined by examining the coefficient matrix AXY, j . We next review some properties
that are necessary for establishing the procedure of extracting informative variables
in the later section.

As a result of Definition 1, if Y →
(c)

X then there exists at least one pair (i, h) ∈
{1, . . . , n} × {1, . . . , c} such that

E
(

X̂i,t (h|ΩXY ) − Xi,t+h

)2
< E

(
X̂i,t (h|ΩX ) − Xi,t+h

)2
,

where X̂i,t (h|ΩXY ) and X̂i,t (h|ΩX ) are the i th element of X̂t (h|ΩXY ) and X̂t (h|ΩX ),
respectively. Now we introduce how to calculate X̂t (h|ΩXY ). Based on Eq. (1), for
any given time lag h > 0 we have that

Wt+h =
h−1∑

k=0

A(k)
1 (b + at+h−k) +

p∑

j=1

A(h)
j Wt+1− j , (3)

where A(k)
j is a matrix obtained from the recursive formula

A(k)
j =

{
A j k = 1

A(k−1)
j+1 + A(k−1)

1 A j k = 2, 3, . . . , h,
(4)

and j = 1, . . . , p. Consider the following partition of matrix A(h)
j :

A(h)
j =

(
A(h)

X X, j A(h)
XY, j

A(h)
Y X, j A(h)

Y Y, j

)
,
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Extracting informative variables 1155

where A(h)
X X, j and A(h)

XY, j are two sub-matrices with orders (n × n) and (n × m),
respectively. Denote the identity matrix of order n by In , it is clear that Xt+h =
(In, 0n×m)Wt+h . Based on the notations introduced above, the best linear predictor
(in matrix form) is given by

X̂t (h|ΩXY ) = b1,h +
p∑

j=1

(
A(h)

X X, j Xt+1− j + A(h)
XY, j Yt+1− j

)
, (5)

where b1,h = (In, 0n×m)
∑h−1

k=0 A(k)
1 b. Equation (5) shows that the best linear predictor

X̂t (h|ΩXY ) relates to Yt merely through the coefficient matrix A(h)
XY, j . This will serve

as an important benchmark for the remaining of this study.
Note that Definition 1 focuses on the causal relationship between the two random

vectors Xt and Yt . In particular, it explicitly defines whether or not Yt can improve the
forecasting of Xt+h . However, by the preceding arguments we learn that if Y →

(c)
X ,

then it is guaranteed that adding all variables in Yt into the information set will improve
the forecasting of “some” variables in Xt —but not definitely all. On the other hand,
the forecasting of Xt+h may be improved by utilizing merely the information of
“some” variables in Yt —but not necessarily all. Therefore, our goal here is to provide
a statistical procedure to extract those “informative variables” in both Xt and Yt . To do
this, we first introduce the definition of “non-informative variables” in both Xt and Yt .

Definition 2 (Non-informative Variables in Xt and Yt ) Consider the VAR (p) model
described in Eqs. (1)–(2) and assume that Y →

(c)
X for some given integer c > 0.

(a) The variable Yi,t in Yt = (Y1,t , . . . , Ym,t )
′ is non-informative if

X̂t (h|ΩXY ) = X̂t (h|ΩXY−i ) for all h ≤ c, (6)

where ΩXY−i = ΩXY \ {Yi,t , . . . , Yi,1} refers to the reduced information set with
the i th variable in Yt being excluded.

(b) The variable Xi,t in Xt = (X1,t , . . . , Xn,t )
′ is non-informative if

X̂i,t (h|ΩXY ) = X̂i,t (h|ΩX ) for all h ≤ c. (7)

The result of Definition 2 directly implies that, if the prediction of Xt+h based
on ΩXY is the same as that based on the reduced information set ΩXY−i , then the
variable Yi,t can be excluded from analysis (since it is non-informative in predicting
Xt ). Analogously, if the prediction of Xi,t+h based on ΩXY is the same as that based on
ΩX , then the variable Xi,t can be excluded from analysis. The following two theorems
provide useful guidelines for finding the non-informative (or informative) variables in
both Xt and Yt .

Theorem 1 (Identification of Non-informative Variables in Yt ) Consider the matrix
A(h)

XY, j given in Eq. (5) and its column partition
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A(h)
XY, j =

(
A(h)

XY, j (:, 1), A(h)
XY, j (:, 2), . . . , A(h)

XY, j (:, m)
)

, (8)

where A(h)
XY, j (:, i) refers to the i th column of A(h)

XY, j . Then for any given i ∈ {1, . . . , m},
Yi,t is non-informative if and only if A(h)

XY, j (:, i) = 0 for all (h, j) ∈ {1, . . . , c} ×
{1, . . . , p}.

Proof Although the proof is quite similar to the one shown by Dufour and Renault
(1998), we sketch it here for the sake of completeness. Based on Eq. (5), X̂t (h|ΩXY )

can be further represented as

X̂t (h|ΩXY ) = b1,h +
p∑

j=1

A(h)
X X, j Xt+1− j +

m∑

l=1

p∑

j=1

A(h)
XY, j (:, l)Yl,t+1− j

= b1,h +
p∑

j=1

A(h)
X X, j Xt+1− j +

p∑

j=1

A(h)
XY, j (:, i)Yi,t+1− j

+
m∑

l �=i

p∑

j=1

A(h)
XY, j (:, l)Yl,t+1− j ,

where the last equality is obtained by dividing the information set ΩY into {Yi,t } and
ΩY−i . Thus, by treating ΩY−i as the set of “auxiliary variables”, we can conclude that

A(h)
XY, j (:, i) = 0 for all (h, j) ∈ {1, . . . , c}× {1, . . . , p} is the necessary and sufficient

condition for X̂t (h|ΩXY ) = X̂t (h|ΩXY−i ) (the result of Theorem 3.1 by Dufour and
Renault 1998). The result then follows.

Theorem 2 (Identification of Non-informative Variables in Xt ) Consider the matrix
A(h)

XY, j given in Eq. (5) and its row partition

A(h)
XY, j =

⎛

⎜⎜⎜⎜⎝

A(h)
XY, j (1, :)

A(h)
XY, j (2, :)

...

A(h)
XY, j (n, :)

⎞

⎟⎟⎟⎟⎠
, (9)

where A(h)
XY, j (i, :) refers to the i th row of A(h)

XY, j . Then for any given i ∈ {1, . . . , n},
Xi,t is non-informative if and only if A(h)

XY, j (i, :) = 0 for all (h, j) ∈ {1, . . . , c} ×
{1, . . . , p}.

Proof The proof is quite similar to that of Theorem 1. By extending the formula given
in Eq. (5), we have that
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Extracting informative variables 1157

X̂i,t (h|ΩXY ) = b1,h(i) +
p∑

j=1

A(h)
X X, j (i, :)Xt+1− j +

p∑

j=1

A(h)
XY, j (i, :)Yt+1− j

= b1,h(i) +
p∑

j=1

A(h)
X X, j (i, i)Xi,t+1− j +

n∑

l �=i

p∑

j=1

A(h)
X X, j (i, l)Xl,t+1− j

+
p∑

j=1

A(h)
XY, j (i, :)Yt+1− j

where b1,h(i) refers to the i th element of vector b1,h , and the last equality is obtained
by dividing the information set ΩX into {Xi,t } and ΩX−i . Thus, by treating ΩX−i as

the set of “auxiliary variables”, we can conclude that A(h)
XY, j (i, :) = 0 for all (h, j) ∈

{1, . . . , c} × {1, . . . , p} is the necessary and sufficient condition for X̂i,t (h|ΩXY ) =
X̂i,t (h|ΩX ) (the result of Theorem 3.1 by Dufour and Renault 1998). The result then
follows.

3 Extracting informative variables

Theorems 1 and 2 state that the informative variables for two-group causality can
be explicitly identified by examining the row and column vectors of the coefficient
matrix A(h)

XY, j . However, in practice the parameters in A(h)
XY, j are usually unknown and

need to be estimated. Therefore, to extract all informative variables one can resort to
a study analogous to “model selection”. When the number of variables is large, some
commonly used algorithms are: stepwise, forward selection, and backward elimina-
tion. These algorithms involve a multi-stage procedure of variable selection and/or
elimination that are executed based on the so-called modified Wald test proposed by
Lütkepohl and Burda (1997). Before we proceed, let us first look at the following
simple example that illustrates how a desired modified Wald test is performed.

3.1 The modified Wald test

Let us consider the following three-variate VAR(1) process with

⎛

⎝
X1,t

Y1,t

Y2,t

⎞

⎠ =
⎛

⎝
AX1 X1 AX1Y1 AX1Y2

AY1 X1 AY1Y1 AY1Y2

AY2 X1 AY2Y1 AY2Y2

⎞

⎠

⎛

⎝
X1,t−1
Y1,t−1
Y2,t−1

⎞

⎠ + at .

Given c = 2, suppose we would like to test whether or not Y1,t is an informative
variable in the causal relation Y →

(2)
X , by Definition 2 we can test the null hypothesis

H0 : X̂t (h|ΩXY ) = X̂t (h|ΩXY−1) for h = 1, 2. (10)
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1158 Y.-C. Hung, N.-F. Tseng

Based on the result of Theorem 1, if A(1)
XY,1(:, 1) and A(2)

XY,1(:, 1) are both close
to zero, then the null hypothesis is not rejected and Y1,t is characterized as a non-
informative variable; otherwise it is characterized as an informative variable. To
perform a general test for any given c and VAR(p) model, we consider the matrix
A(h) = (A(h)

1 , . . . , A(h)
p ) for h = 1, . . . , c (recall that A(h)

j are matrices defined in
Eq. (4)) and the column vector

α =
⎛

⎜⎝
vec(A(1))

...

vec(A(c))

⎞

⎟⎠ ,

where “vec” is the column stacking operator that creates a column vector from the
matrix by stacking its column vectors below one another. Thus, at each stage the
hypotheses for testing whether or not a particular variable Yi,t (or Xi,t ) is informative
can be written as the form

{
H0 : (Ic ⊗ R)α = 0
Ha : (Ic ⊗ R)α �= 0

(11)

where ⊗ is the Kronecker product so that

Ic ⊗ R =

⎛

⎜⎜⎜⎝

1 · R 0 · R · · · 0 · R
0 · R 1 · R · · · 0 · R

...
...

. . .
...

0 · R 0 · R · · · 1 · R

⎞

⎟⎟⎟⎠

cr×cpK 2

,

and R is a “designated” (r × pK 2) matrix that corresponds to the null hypothesis (here
r = # of variables in Xt or Yt considered in the null hypothesis and K = m + n).
To illustrate, the preceding example for the null hypothesis in Eq. (9) gives that

A(h) =
⎛

⎝
AX1 X1 AX1Y1 AX1Y2

AY1 X1 AY1Y1 AY1Y2

AY2 X1 AY2Y1 AY2Y2

⎞

⎠
h

for h = 1, 2, and α =
(

vec(A(1))

vec(A(2))

)
.

To test if Y1,t is informative, we can simply choose

R = (
0 0 0 1 0 0 0 0 0

)

so as to satisfy that

(I2 ⊗ R)α =
(

R 0
0 R

) (
vec(A(1))

vec(A(2))

)
=

(
A(1)

XY,1(:, 1)

A(2)
XY,1(:, 1)

)
.
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As a result, testing the null hypothesis that

(I2 ⊗ R)α = 0 is then equivalent to testing

(
A(1)

XY,1(:, 1)

A(2)
XY,1(:, 1)

)
=

(
0
0

)
.

Analogously, to test if Y2,t is informative, we can simply choose

R = (
0 0 0 0 0 0 1 0 0

) ;
while to test if X1,t is informative, we can simply choose

R =
(

0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0

)
.

Note that once the hypothesis in Eq. (11) is specified, the modified Wald test statistic
is given by

λmod
Wald = T

(
(Ic ⊗ R)α̂ + ŵ√

T

)′ (
(Ic ⊗ R)Σ̂α̂(Ic ⊗ R)′ + λΣ̂ŵ

)−1

·
(

(Ic ⊗ R)α̂ + ŵ√
T

)
, (12)

where T is the number of data observations, α̂ is the least square estimator of α, ŵ

is a random vector (independent of α̂) drawn from a multivariate normal distribution
M N (0, λΣ̂ŵ), λ is usually a small positive value (relative to T ) chosen by the user,

Σ̂ŵ =
(

0 0
0 Ic−1 ⊗ diag(RΣ̂

β̂
R′)

)
,

where β̂ is the least square estimator of β = vec(A(1)), Σ̂
β̂
/T is the estimated covari-

ance matrix of β̂,

Σ̂α̂ =

⎛

⎜⎜⎜⎝

I∑1
i=0 B1−i ⊗ JBi J ′

...∑c−1
i=0 Bc−1−i ⊗ JBi J ′

⎞

⎟⎟⎟⎠ Σ̂
β̂

⎛

⎜⎜⎜⎝

I∑1
i=0 B1−i ⊗ JBi J ′

...∑c−1
i=0 Bc−1−i ⊗ JBi J ′

⎞

⎟⎟⎟⎠

′

,

where

B =
(

A(1)

IK (p−1) 0K (p−1)×K

)
and J = (

IK , 0K×K (p−1)

)
.

It has been shown (Lütkepohl and Burda 1997) that

λmod
Wald

d−→ χ2(rc) under the null hypothesis in Eq. (11).
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1160 Y.-C. Hung, N.-F. Tseng

Therefore, given a significance level α , the null hypothesis in Eq. (11) is rejected
when λmod

Wald > χ2
1−α(rc).

Remark 1 If c = 1, the random vector ŵ has a degenerate distribution localized at
zero (i.e., ŵ = 0 and Σ̂ŵ = 0 almost surely). In this case the modified Wald test
reduces to the standard Wald test.

3.2 Automatic computer-search algorithms

Note that if the identification of every informative variable relies merely on one
modified Wald test (i.e., with all remaining variables included in analysis), the search
procedure can lead to the dropping of “true” informative variables (the issue is sim-
ilar to that in regression analysis the full model is considered while variables are
selected merely based on the t statistics, see Kutner et al. 2008). On the other hand, if
the modified Wald test is conducted by considering all possible subsets of variables,
the search procedure can be computationally expensive (especially when the num-
ber of variables is large). To overcome these problems, we introduce some automatic
computer-search algorithms that have been widely used in regression analysis, such
as the forward selection, backward elimination, and stepwise. We introduce the ideas
of these algorithms in the following.

Forward Selection: At each stage the algorithm includes one “most informative”
variable based on a predetermined level of the corresponding p value, but omitting
the test whether an included variable should be removed. The algorithm terminates if
no further variables can be included.

Backward Elimination: This is the opposite of forward selection. The algorithm
starts with the model containing all variables and at each stage remove one “most non-
informative” variable based on a predetermined level of the corresponding p value.
The algorithm terminates if no further variables can be removed.

Forward Stepwise: At each stage the algorithm first includes one “most informa-
tive” variable based on a predetermined level of the corresponding p value (called
α-to-enter) and, if there are any of the other variables in the model, remove one “most
non-informative” variable based on another predetermined level of the corresponding
p value (called α-to-remove). The algorithm terminates if no further variables can
either be included or removed.

It should be mentioned here that, the algorithms introduced above all result in
approximations to the “best set” of informative variables. In addition, there is no
guarantee that the search results of different algorithms will be the same. We summarize
the steps of implementing these algorithms as follows, in which we start with extracting
the informative variables in Yt and the informative variables in Xt afterwards.

Step 1: Select one algorithm and denote the corresponding initial set of informative
variables in Yt and Xt by Y (0) and X (0), respectively. Set the initial stage
k = 0.

Step 2: Set the stage k = k +1. Update the set of informative variables in Yt based on
X (0) and the associated modified Wald tests, denote the updated set by Y (k).

Step 3: Repeat Step 2 until the stopping criterion is satisfied. Denote the resulting
estimated set of informative variables in Yt by Ỹt . Set the stage k = 0.
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Table 1 The ADF test for the transformed eight time series data based on the AR(1) model

Variables X1,t X2,t X3,t X4,t Y1,t Y2,t Y3,t Y4,t

Test statistic −3.62 −3.16 −4.26 −2.78 −3.70 −3.32 −3.54 −2.75

p value 0.006 0.024 0.000 0.064 0.005 0.015 0.008 0.067

Step 4: Set the stage k = k + 1. Update the set of informative variables in Xt based
on Ỹt and the associated modified Wald tests, denote the updated set by X (k).

Step 5: Repeat Step 4 until the stopping criterion is satisfied. Denote the resulting
estimated set of informative variables in Xt by X̃t .

Step 6: Extract the obtained two sets Ỹt and X̃t .

4 A real example

Now we illustrate the algorithms introduced in Sect. 3.2 on a real example. Let us
consider the following two groups of econometric variables in the United States,
which were retrieved from the database of Taiwan Economic Journal (http://www.
finasia.biz):

X1,t : Exports of Goods (seasonally adjusted, in millions USD)
X2,t : Imports of Goods (seasonally adjusted, in millions USD)
X3,t : Dow Jones Industrial Average Index
X4,t : S&P 500 Index
Y1,t : Consumer Price Index (seasonally adjusted)
Y2,t : New Orders for Manufactured Goods (in millions USD)
Y3,t : ISM Manufacturing Index
Y4,t : Leading Indicators

Note that in order to make the primary time series become stationary, each variable
is transformed into the “growth rate” (i.e., the natural logarithm of (the value in the
present period)/(the value in the previous period)). The resulting time series plots are
then given in Fig. 1, wherein the growth rates are presented monthly over the period
from January 2001 to September 2011.

To validate the property of stationarity, the Augmented Dickey–Fuller (ADF) test
is performed for each of the transformed time series data. For example, if Yi,t is the
transformed time series, then a Unit Root test based on the simple assumption of AR(1)
model is performed using the regression equation

�Yi,t = μ + βYi,t−1 − α1�Yi,t−1 + εt ,

where μ is a constant and � is the first difference operator. The results for all the
transformed time series are given in Table 1.

As can be seen from Table 1, the p values for the ADF tests of these eight variables
are rather small. This strongly supports that all the time series data are stationary after
transformation.
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Fig. 1 The time series plots for the growth rates of the eight variables recorded monthly from January 2001
to September 2011

We next consider fitting a VAR(p) model for the eight variables based on the data
observed from January 2001 to December 2010. The data observed from January 2011
to September 2011 are left for testing the predictability of the informative variables
extracted by different algorithms (see later in Sect. 4). After a complete model selection
procedure based on the Akaike information criterion (AIC), a VAR(2) model is chosen
so as to validate the desired causal relationship. The stage-by-stage results of the
three algorithms (forward stepwise, forward selection, and backward elimination) for
extracting the informative variables along with the corresponding computing times are
given in Tables 2, 3, 4, 5, 6 and 7. Note that in this study we simply choose c = 2. In
addition, for each modified Wald test the value of α-to-enter is chosen to be 0.05, while
the value of α-to-remove is chosen to be 0.10 (Kutner et al. 2008) suggested that the
value of α-to-enter should be less than the value of α-to-remove for model selection).
All numerical results in this section were performed by using the software package
R (version 2.13.0) and executed on 3.0 GHz AMD Athlon II X2 250 processors with
4GB of cache under the operating system of Microsoft Windows 7 32-bit Service Pack
1 (SP1).

Based on Tables 2, 3, 4, 5, 6 and 7, the two sets of informative variables
extracted by the forward selection algorithm are Ỹt = {Y1,t , Y2,t , Y3,t } and X̃t =
{X1,t , X2,t , X3,t , X4,t }; the two sets of informative variables extracted by the back-
ward elimination algorithm are Ỹt = {Y1,t } and X̃t = {X1,t , X2,t , X3,t }; and the
two sets of informative variables extracted by the forward stepwise algorithm are
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Table 2 The stage-by-stage result of the “forward selection” algorithm for extracting informative variables
in Yt and the associated computing time

Stage The p value of λmod
Wald Enter

Y1,t Y2,t Y3,t Y4,t

k = 1 0.000 0.022 0.007 0.021 Y1,t

k = 2 * 0.009 0.087 0.680 Y2,t

k = 3 * * 0.019 0.107 Y3,t

k = 4 * * * 0.154 *

Computing time 7.66 (second)

Note that for each modified Wald test the values of α-to-enter is chosen to be 0.05
* Represents the invalid cases

Table 3 The stage-by-stage result of the “forward selection” algorithm for extracting informative variables
in Xt and the associated computing time

Stage The p value of λmod
Wald Enter

X1,t X2,t X3,t X4,t

k = 1 6.7 × 10−9 2.1 × 10−132 0.022 0.014 X2,t
k = 2 9.5 × 10−58 * 0.011 1.1 × 10−5 X1,t

k = 3 * * 1.9 × 10−7 2.9 × 10−6 X3,t

k = 4 * * * 2.2 × 10−24 X4,t

Computing time 7.75 (second)

Note that for each modified Wald test the values of α-to-enter is chosen to be 0.05
* Represents the invalid cases

Table 4 The stage-by-stage result of the “backward elimination” algorithm for extracting informative
variables in Yt and the associated computing time

Stage The p value of λmod
Wald Remove

Y1,t Y2,t Y3,t Y4,t

k = 1 5.1 × 10−10 1.8 × 10−5 0.040 0.358 Y4,t
k = 2 4.7 × 10−6 0.131 0.240 * Y3,t

k = 3 4.9 × 10−6 0.117 * * Y2,t

k = 4 0.005 * * * *

Computing time 10.34 (second)

Note that for each modified Wald test the values of α-to-remove is chosen to be 0.10
* Represents the invalid cases

Ỹt = {Y1,t , Y2,t } and X̃t = {X1,t , X2,t }. For comparison purposes, the informative
variables extracted by the three algorithms are summarized in Table 8.

Remark 2 It is noted that for small samples, the size of the modified Wald test can
be sensitive to the choice of λ in Eq. (12). To avoid this problem, for this particular
data set we suggest the following rule of thumb for choosing λ at each stage of the
modified Wald test:
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Table 5 The stage-by-stage result of the “backward elimination” algorithm for extracting informative
variables in Xt and the associated computing time

Stage The p value of λmod
Wald Remove

X1,t X2,t X3,t X4,t

k = 1 0.001 1.4 × 10−4 0.013 0.143 X4,t

k = 2 3.6 × 10−4 0.001 4.6 × 10−4 * *

Computing time 0.43 (second)

Note that for each modified Wald test the values of α-to-remove is chosen to be 0.10
* Represents the invalid cases

Table 6 The stage-by-stage result of the “forward stepwise” algorithm for extracting informative variables
in Yt and the associated computing time

Stage The p value of λmod
Wald Enter/Remove

Y1,t Y2,t Y3,t Y4,t

k = 1 0.013 0.022 0.031 0.384 Y1,t (Enter)

* * * * *

k = 2 * 0.092 0.013 0.260 Y3,t (Enter)

0.000 * * * *

k = 3 * 0.003 * 0.616 Y2,t (Enter)

0.000 * 0.180 * Y3,t (Remove)

k = 4 * * 0.094 0.113 *

* * * * *

Computing time 12.16 (second)

Note that for each modified Wald test the values of α-to-enter and α-to-remove are chosen to be 0.05
and 0.10, respectively
* Represents the invalid cases

Table 7 The stage-by-stage result of the “forward stepwise” algorithm for extracting informative variables
in Xt and the associated computing time

Stage The p value of λmod
Wald Enter/Remove

X1,t X2,t X3,t X4,t

k = 1 7.2 × 10−14 2.5 × 10−45 0.196 0.061 X2,t (Enter)

* * * * *

k = 2 2.5 × 10−24 * 0.213 0.015 X1,t (Enter)

* 1.1 × 10−42 * * *

k = 3 * * 0.389 0.104 *

* * * * *

Computing time 3.86 (second)

Note that for each modified Wald test the values of α-to-enter and α-to-remove are chosen to be 0.05
and 0.10, respectively
* Represents the invalid cases
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Table 8 The two sets of informative variables extracted by the three algorithms

Algorithm The estimated set Ỹt The estimated set X̃t

Forward selection {Y1,t , Y2,t , Y3,t } {X1,t , X2,t , X3,t , X4,t }
Backward elimination {Y1,t } {X1,t , X2,t , X3,t }
Forward stepwise {Y1,t , Y2,t } {X1,t , X2,t }

Table 9 The forecasting of X1,t+h and X2,t+h based on (i) the estimated sets Ỹt and X̃t of the three
algorithms; and (ii) all the variables in Yt and Xt

Algorithm Forecasting of X1,t+h Forecasting of X2,t+h

MSEP MAEP MSEP MAEP

Forward stepwise 1.19 × 10−4 0.0094 1.05 × 10−4 0.0073

Forward selection 1.01 × 10−4 0.0087 6.77 × 10−5 0.0064

Backward elimination 1.08 × 10−4 0.0092 7.98 × 10−5 0.0067

All variable information 1.03 × 10−4 0.0082 9.49 × 10−5 0.0087

Let N be the number of variables included in the VAR model. Choose λ = 9 − N and
λ = 35 − 5N when extracting the informative variables in Yt and Xt , respectively.

We next evaluate the algorithms in terms of their predictability based on the
extracted informative variables by using the data from January 2011 to September
2011. Specifically, we compare their accuracy in forecasting two common variables
in X̃t , viz., X1,t and X2,t (see Table 8). To carry out this comparison, the following
two performance measures, called the mean squared error of prediction (MSEP) and
the mean absolute error of prediction (MAEP), are considered:

MSEP = 1

M

M∑

h=1

[
Xi,t+h − X̂i,t (h|ΩX̃t Ỹt

)
]2

MAEP = 1

M

M∑

h=1

∣∣∣Xi,t+h − X̂i,t (h|ΩX̃t Ỹt
)

∣∣∣

Note that M is the number of observations we wish to forecast in the future (here
M = 9), whereas ΩX̃t Ỹt

is the set of all informative variables extracted by a particular
algorithm based on current observations. The numerical results are given in Table 9.

As can be seen from Table 9, for this particular data set the forward selection algo-
rithm clearly outperforms the other two algorithms in forecasting X1,t+h and X2,t+h .
This supports that if one wishes to forecast the growth rates of “Exports of Goods” and
“Imports of Goods”, it suffices to utilize merely the information of “Consumer Price
Index”, “New Orders for Manufactured Goods”, and “ ISM Manufacturing Index”.
In summary, compared to the method that includes all variable information, the three
algorithms perform well in terms of both the MSEP and MAEP.
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5 Conclusions

In this article we introduced various computer-search algorithms so that a hypothesis
testing procedure can be utilized to extract informative variables in the validation of
causal relationship between two groups of time series. The result is useful in the sense
that, it allows us to forecast the future quantity of explicit variables by utilizing the
minimum data information. The numerical results show that the algorithms considered
in this study have fairly high accuracy in forecasting the future quantity of selected
variables. There are some issues we would like to address here. First, it should be
mentioned that the algorithms used in this study may fail (i.e., Ỹt = X̃t = ∅, the
readers can refer to Makridakis et al. (1983) for an example that the forward step-
wise algorithm fails). To overcome this problem, we can consider the following two
strategies: (i) increase the values of α-to-enter and/or α-to-remove; (ii) utilize other
search algorithms or perform an exhaustive search of all possible subsets of variables.
If none of the strategies work, it is possible that there is no causal relationship between
the two groups of variables. Second, one may suspect that which information sets Ỹt

and X̃t obtained from the algorithms are the “best”. This answer is, in fact, subject
to cases. One possible solution is to consider the accuracy of forecasting in some
selected variables. To illustrate, let us recall the numerical results in Table 9. Suppose
now we are more interested in forecasting the growth rates of “Exports of Goods”
(X1,t ) and “Imports of Goods” (X2,t ), then the informative variables extracted by the
forward selection algorithm should work better (since they result in the smallest values
of MSEP and MAEP). Finally, we are currently investigating the computational cost
when the number of variables becomes large, and how to extract informative variables
based on a suitable hypothesis testing procedure for non-stationary processes.
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