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Modelling CO2 emission allowance prices is important for pricing CO2 emission allowance linked
assets in the emissions trading scheme (ETS). Some statistical properties of CO2 emission allowance
prices have been discovered in the literature ignoring price jumps. By employing real data from
the ETS, this research first detects the jump risk using a jump test and then verifies jump effects
in modelling CO2 emission allowance prices by comparing the in-sample and out-of-sample model
performance. We suggest a model which can capture the statistical properties of autocorrelation,
volatility clustering and jump effects is more appropriate for modelling CO2 emission allowance
prices. We establish a general framework for pricing CO2 emission allowance options on futures
contracts with these properties and find that the jump risk significantly affects the value of the CO2
emission allowance option on futures contracts. More importantly, we demonstrate that the dynamic
jump ARMA–GARCH model can provide more accurate valuations of the CO2 emission allowance
options on futures than other models in terms of pricing error.

Keywords: Emission allowances; Dynamic jump model; Jump test; Conditional Esscher transform

JEL Classification: C51, G13

1. Introduction

In recent years, scientists have become increasingly concerned
with the concentration of greenhouse gases (GHGs) in the
atmosphere and the phenomenon of global warming. The effect
of global warming has potentially catastrophic consequences
on the environment as can be seen from the ice caps that
are melting faster, the sea levels that are rising and weather
patterns that are changing. Thus, managing the risks caused
by GHGs is becoming more and more important for succes-
sive governments and international society as a whole. The
Kyoto protocol, which was initially adopted on 11 December
1997 in Kyoto, Japan and came into force on 16 February
2005, is a well-known agreement that is a response to these
risks.§ Today, the Kyoto protocol covers over 190 counties.The
industrialized countries under the protocol agreement are to

∗Corresponding author. Email: jrweihuang@cc.ncu.edu.tw
§The Kyoto protocol contains three mechanisms, namely, interna-
tional emission trading (IET), joint implementation (JI) and the clean
development mechanism (CDM) that are designed to support Annex
I members to meet their targets by purchasing emission credits from
other parties, in particular:

reduce their collective emissions of GHGs by 5.2% compared
with those for the year 1990. The goal of the Kyoto agree-
ment is to lower overall emissions from six GHGs—carbon
dioxide, methane, nitrous oxide, sulphur hexafluoride, HFCs
and PFCs—calculated as an average over the five-year period
of 2008–2012. National targets range from 8% reductions for
the European Union and some others to 7% for the US, 6%
for Japan, 0% for Russia, and permitted increases of 8% for
Australia and 10% for Iceland.

Developing the financial market for trading emission all-
owances or permits, primarily carbon dioxide (CO2), is one of
the main mechanisms for reducing GHGs. Several national and

• for the IET mechanism, these credits are AAUs from other
Annex I members.

• for the JI mechanism, the credits are the so-called ERUs
(emission reduction units) and RMUs (specific removable
units) which are obtained from projects within the Annex I
area.

• for the CDM mechanism, the credits are the so-called CERs
(certified emission reductions), obtained from GHG reduction
within non-Annex I countries.

© 2015 Taylor & Francis
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2 S.S. Yang et al.

regional emission markets have been established. For example,
the European Union Emissions Trading Scheme (EU ETS)
formally entered into operation in January 2005. Since then, the
EU ETS has become one of the important trading markets for
reducing worldwide emissions of carbon dioxide (CO2) within
the Kyoto Protocol. Under the EU ETS scheme, the firms must
hold the required amount of emission permits at the end of
the year to meet their emissions of CO2 over the previous
year. However, the ETS allows firms to trade the amount of
emission permits that they hold. Thus, within this framework,
the prices of CO2 emission allowances can affect the global
economy because they give rise to an increasingly significant
impact on the prices of power, gas and other emission-related
commodities and economic activities, respectively (e.g. Kara
et al. 2008, Carmona et al. 2010). According to a 2012 report
of the World Bank, the global transactions for 2011 exceeded
10.2 billion tons of CO2 worth approximately $176 billion.†

To date, the EU ETS has experienced three phases. Phase I,
from 2005–2007, has proved to be a relatively turbulent int-
roductory period, and the system has passed Phase II (2008–
2012) with Phase III started in 2013. The EU ETS is now the
world’s largest market for CO2 emission allowances, account-
ing for approximately 98% of the global transactions for 2011.
Thus, CO2 emission allowances have become a new asset class
in financial markets. Understanding the price behaviour and
dynamics of CO2 emission allowances is of major importance
in the market for ETS. In recent years, there has been a growing
interest in ‘carbon finance’ and many academic papers have
started to examine the CO2 emission allowance prices. For
example, Paolella and Taschini (2008) find that a generalized
asymmetric t innovation distribution particularly suits the styl-
ized facts of CO2 emissions data. Seifert et al. (2008) study
the features of the EU ETS and analyse the resulting CO2
spot price dynamics within a stochastic equilibrium model.
Benz and Truck (2009) examine the limited sample of over-
the-counter emission allowance spot prices using a regime-
switching model. Chesney and Taschini (2012) develop an
endogenous model for describing the emission allowance price
dynamics process. The above studies have discussed the vari-
ous stochastic properties of the CO2 emission allowance price.

Due to abnormal events, analysing jump risk in asset prices
has attracted a great deal of attention. However, most of the exi-
sting literature explores the jump risk for pricing opti-
ons with equity returns (Merton 1976, Jorion 1988, Chan and
Maheu 2002, Kou 2002, Maheu and McCurdy 2004, Duan et al.
2006, Daal et al. 2007). In regard to the emission allowance
price, the above studies have not introduced jumps in their
modelling with the exception of Daskalakis et al. (2009) and
Borovkov et al. (2011). Borovkov et al. (2011) point out some
of the situations in which the jumps may appear due to the way
in which the EU ETS are currently managed. For instance,
the member states negotiate their allowance allocations and
the market responds by adapting to the new situation. As a
result, a revised decision on the amount of allocated certificates
leads to a jump in the market prices of the allowances. In
addition, a sudden change in the demand for and/or price of
fuel can result in the pollution levels changing dramatically,

†State and trends of the carbon market in 2012. World Bank CF
Research Report, Washington DC.

which in turn impacts the allowance prices. Thus, modelling
jumps in emission allowance prices must be considered if
the market emission price exhibits jumps. Daskalakis et al.
(2009) is a pioneering work that considers the jump effects in
modelling CO2 spot price dynamics and has received much
attention. They first use a jump-diffusion spot price model and
a mean reverting stochastic convenience yield to describe the
relationship between spot and futures markets for contracts
written within the trial period (Phase I) that expire in the Kyoto
commitment period. After that, Borovkov et al. (2011) further
deal with both continuous time diffusion and jump-diffusion
models with emission markets using a mathematical model
based on market equilibria derived from the corresponding
partial differential equations. Unfortunately, the authors do not
use real-world emission market EU ETS data to examine the
jump effects. In order to confirm the theoretical models of the
jump effects, this study intends to fill the gap by carrying out
an in-depth analysis based on the available empirical evidence.

To analyse the jump effects using market data, we employ
the price data for the EU ETS in Phase II. Bredin and Muckley
(2011) point out that the EU ETS in Phase I is characterized
by the uncertainty and volatility associated with the market
price of CO2 emission allowances and Phase II is a maturing
market driven by the fundamentals. Montagnoli and de Vries
(2010) also explore the efficient markets hypothesis (EMH)
in both Phases I and II of the EU ETS and test for the weak
form efficiency using the random walk hypothesis and variance
ratio tests.‡ The results point to inefficiency in Phase I, but
identify efficiency at the beginning of Phase II, showing signs
that the EU ETS is maturing. The EU ETS in Phase I is an
immature market where the characteristics and the statistical
structures of the market data in Phase I may not be appropriate
for analysis and forecasting. In addition, these markets for
the EU ETS tend to react sharply to world events and more
mature markets (in Phase II) may either absorb or adjust to
new information. Therefore, this research focuses on Phase
II of the EU ETS and we extend Daskalakis et al. (2009) to
work with CO2 spot prices in Phase II in order to investigate
the jump risk in CO2 emission allowance prices and value
their linked assets,§ which we demonstrate with CO2 opti-
ons on futures contracts. Our paper differs from Daskalakis
et al. (2009) in three respects. First, we perform a jump test
to formally examine the jumps in the CO2 spot price. After
proving the existence of the jumps, we take into account the
jumps in modelling the CO2 spot price. Second, we allow
the structure of the jump intensity to be both time-varying
(referring to dynamic jumps) and constant and examine the
most appropriate setting for jumps using actual CO2 emission
allowance price data.¶ Third, in addition to jumps, we also
consider the important properties of autocorrelation in the log-
return and persistence in volatility to capture the dynamics of
CO2 emission allowance prices. Thus, the jump dynamics are

‡The EMH states, in its weak form, that a market’s prices fully
reflect all available information. This implies that investors cannot
outperform the market by exploiting past information (e.g. Fama
1970).
§The current CO2 linked assets are spot, futures and options contracts.
¶For the CO2 allowance spot price, we focus on the most liquid
platforms. BlueNext is the market place dedicated to CO2 allowances
based in Paris and has become the most liquid platform for spot
trading; 72% of the volume of spot contracts are traded on BlueNext.

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
he

ng
ch

i U
ni

ve
rs

ity
] 

at
 2

3:
10

 1
0 

D
ec

em
be

r 
20

15
 



Detecting and modelling the jump risk of C O2 emission allowances 3

Figure 1. The price of the spot emission allowance in Europe.

built on an ARMA–GARCH model, which is referred to as a
jump ARMA–GARCH model in this paper.

To provide more robust findings in modelling the CO2 emis-
sion allowance prices, we compare the fitting accuracy of the
proposed jump ARMA–GARCH model with that of various
other jump diffusion models such as the Merton, Kou jump
and mean reverting jump diffusion models as well as the mod-
els proposed in the literature regarding pricing CO2 emission
allowance options on futures, such as the Black–Scholes, mean
reverting, ARMA–GARCH and ARMA–EGARCH models.
Both in-sample and out-of-sample tests are examined. The
empirical investigation shows that the jump ARMA–GARCH
model with a dynamic jump specification gives the best
model fit and forecasting performance. In addition, the dyn-
amic jump ARMA–GARCH model shows significant
persistence in the conditional jump. This indicates that the risk
associated with jumps in the CO2 price return is systematic.
Thus, taking into account the dynamic jump effect in pricing
CO2 emission allowance options on futures is important. We
further develop a framework for pricing CO2 emission all-
owance options on futures contracts to demonstrate the impact
of different properties of the CO2 emission allowance on its
price. Our numerical analysis shows that different properties
of the CO2 emission allowance affect the price of a CO2 emis-
sion allowance option on futures contract to different extents.
Taking into consideration the jump effect increases the values
of options on futures. The value under the proposed dynamic
jump ARMA–GARCH model gives rise to the most significant
effects compared with other CO2 emission allowance return
models.

The above findings are important to the ETS market. This
article contributes to the literature on CO2 emission allowance
options on futures pricing in the following ways. First, we
detect the presence of jumps in the CO2 emission allowance
price and evaluate various jump models for modelling the CO2
emission allowance price. Secondly, to value the CO2 emission
allowance option on futures, we employ the conditional Ess-
cher transform technique to derive the risk neutral valuation
framework under the CO2 emission allowance price return
dynamics following a jump ARMA–GARCH model. Finally,

Table 1. Descriptive statistics of the EUA spot price (S) and
logarithmic return (R).

Prices Returns

Observations 1205 1204
Mean 13.8865 −0.0010
Maximum 28.7300 0.2038
Minimum 5.7200 −0.1080
Std. Dev. 5.1345 0.0278
Skewness 0.7420*** 0.2695***
Excess Kurtosis 0.2695** 4.8062***
Jarque–Bera 114.2379*** 1173.4474***

Notes: The skewness and excess kurtosis statistics include a test of the null
hypotheses where each is zero (the population values if the series is i.i.d.
normal). The Jarque–Bera statistic is used to test for normality based on the
skewness and kurtosis measures combined. The symbol ∗∗ and ∗∗∗ denote
significance at the 5% and 1% levels, respectively.

the fair prices of the options on futures based on various CO2
price return models are calculated and analysed numerically.
It is shown that ignoring the autocorrelation, volatility clus-
tering and jump risk with the CO2 emission allowance price
return would underprice the CO2 emission allowance option
on futures.

The remainder of this paper is organized as follows.
Section 2 provides an in-depth analysis of the econometrics
of the CO2 emission allowance price. In section 3, we con-
struct a jump ARMA–GARCH model and perform an empiri-
cal analysis to investigate the jump effect in the CO2 emission
allowance price. Section 4 shows the pricing of CO2 emission
allowance options on futures under risk neutral valuation. Sec-
tion 5 presents the conclusions. Finally, most proofs are given
in the appendix.

2. Detecting jumps with CO2 emission allowance prices in
the EU ETS

2.1. Statistical analysis of the CO2 emission allowance price

Various exchanges offer spot trading of CO2 allowances. In
this paper, we focus on CO2 spot contracts exchanged on the
most liquid and largest platform, BlueNext, which is the market
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4 S.S. Yang et al.

place dedicated to CO2 allowances in Paris. It was created in
2005 and became the most liquid platform for spot trading
where the global volume has reached an average of 446,000
tons per day and more than 70% of the overall volumes of spot
contracts are traded on BlueNext. To model the CO2 emission
allowance price, we use the CO2 emission allowance price
from BlueNext. The EU ETS envisages several time phases.
The first one extends from 2005 to 2007 and can be regarded as
a trial period aimed at getting the scheme ‘up and running’. The
second allocation phase is planned for the period 2008–2012,
which coincides with the Kyoto commitment period. From then
on, there are consecutive seven-year periods (starting from
the 2013–2020 trading period). The trading of the BlueNext
spot price started on 24 June 2005. However, from October
2006 until December 2007, CO2 spot prices were decreasing
towards zero due to the banking restrictions implemented be-
tween 2007 and 2008 (Daskalakis et al. 2009). Due to this
erratic non-reliable behaviour of spot prices during Phase I,
we have chosen to work only with Phase II CO2 spot prices in
this article.

The data-set consists of daily closing prices for the period
26 February 2008–28 December 2012 (1205 observations).
The trend of the emission allowance price during this period is
depicted in figure 1 and the descriptive statistics of the prices
and returns of the CO2 emission allowances are presented in
table 1.† We can observe that the prices of the CO2 emission
allowances rise rapidly to their maximum level of nearly 29
euros and then fall abruptly to less than 6 euros per EUA.‡ As
shown in figure 2, the historical pattern of the daily returns is
found to change more than three standard deviations over the
sample period. Thus, it also reveals that the jump risk appears
in CO2 emission allowances. The spot market for the CO2
emission allowances seems to have high volatility. Moreover,
the skewness and kurtosis coefficients suggest a leptokurtic
distribution with positively skewed returns in the spot market
for CO2 emission allowances. This leptokurtic effect is also
confirmed by the Jarque–Bera test.

2.2. Detecting jumps

Based on the statistical analysis, we find that jumps might
appear with the price of the CO2 emission allowance. We
further examine whether the jumps exist or not. To formally
test for the presence of jumps, we use the jump test proposed
by Huang and Tauchen (2005).§ Furthermore, Bollerslev et al.
(2008) use this approach to develop the co-jump test. We first
use the jump test by Huang and Tauchen (2005) to detect the
jumps in the CO2 emission allowance price.

The results of the jump test for the CO2 emission allowance
price based on the period 26 February 2008–28 December 2012
are shown in figures 3–5. The data-set consists of daily observa-
tions for the CO2 emission allowance price. To detect the jump

†We define the log return of CO2 emission allowance at time t as
shown in section.
‡One allowance exchanged on the EU ETS corresponds to 1 ton of
CO2 released in the atmosphere, and is called the European Union
Allowance (EUA).
§The theory behind the jump test can be referred to Barndorff-Nielsen
and Shephard (2004), Barndorff-Nielsen et al. (2005) and Huang and
Tauchen (2005).

effect, we present the results based on the total returns mea-
sured at three different intervals for a robustness check. That is,
we examine weekly, monthly and two monthly intervals sepa-
rately. According to figure 3 on a weekly basis, we reject the no
jump null hypothesis of 5% critical value for the 10, 21, 151,
181, 194 weekly observations.¶ Figure 4 on monthly interval
shows that we reject the no jump null hypothesis for 3, 11, 38,
49 and 53 monthly observations under 10% critical value.‖ In
addition, figure 5 concludes that we reject the no jump null
hypothesis for 2, 12 and 19 two monthly observations under
10% critical value.†† Thus, the results presented in figures 3
and 4 and figure 5 all reveal that the CO2 emission allowance
returns exhibit jumps. Furthermore, the results indicate that
jumps are statistically important components of CO2 emission
allowance movements.

3. The dynamics of CO2 emission allowance returns with
jumps

Based on the empirical investigation, we further consider the
jump effect in modelling CO2 emission allowance return dy-
namics. Since the properties of the autocorrelation effect and
volatility clustering have already been found with CO2 emis-
sion allowance return dynamics (Paolella and Taschini 2008,
Benz and Truck 2009),‡‡ we build up the jump specification
with theARMA(s,m)–GARCH(p,q) process for modelling the
CO2 emission allowance returns.

3.1. The jump ARMA(s, m)–GARCH(p, q) model

Let
(
�;�; P; (�t )

N
t=0

)
be a complete probability space, where

P is the data-generating probability measure with specifica-
tions for the conditional mean and conditional variance. The
spot price of CO2 emission allowance over trading day t is
denoted as St and its corresponding return (Rt ) is defined as the
difference of the natural logarithm of the general price levels
(Rt = ln (St ) − ln (St−1)) The jump ARMA(s, m)–GARCH
(p, q) model governing the return dynamics can be expressed
as follows:

Rt = ln

(
St

St−1

)
= μt + εt , (1)

¶Under the 10% critical value, we can reject the no jump null
hypothesis critical value for 1, 10, 21, 30, 44, 65, 89,118, 135, 151,
181, 194 and 211 weekly observations.
‖We can reject the no jump null hypothesis critical value for 3, 11, 38,
49 and 53 monthly observations when we use around 22 observations
in this case.
††We can reject the no jump null hypothesis critical value for 2, 12 and
19 two monthly observations when we use around the 44 observation
in this case.
‡‡In this study, we can find that CO2 emission allowance return has
strong autocorrelation effect and volatility clustering, when we use
Ljung–Box (LB) Q statistics (West and Cho 1995) and Engle (1982)
test.Although not reported here, the parameter estimates of the models
are available upon request.
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Detecting and modelling the jump risk of C O2 emission allowances 5

Figure 2. Historical daily returns of CO2 emission allowances.

Figure 3. Results of the jump test for the weekly price of the CO2 emission allowance. The solid line represents observed jumps and the
dashed line represents critical value of 10% and 5% levels, respectively.

The mean return follows an autoregressive moving average
(ARMA) process as

μt = c +
s∑

i=1

ϑi Rt−i +
m∑

j=1

ζ jεt− j , (2)

where s is the order of the autocorrelation terms; m is the order
of the moving average terms; ϑi is the i th-order autocorrelation
coefficient; ζ j is the j th-order moving average coefficient. εt

is the return innovation observable at time t , which is

εt = ε1,t + ε2,t (3)

Extending from Maheu and McCurdy (2004),† we set two
stochastic innovations in which the first component

(
ε1,t

)
cap-

tures smoothly evolving changes in the conditional variance

†Maheu and McCurdy (2004) consider the jump setting under a
constant conditional mean of GARCH model. We deal with a jump
ARMA–GARCH model and the likelihood function for parameter
estimation is reconstructed.
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6 S.S. Yang et al.

Figure 4. Results of the jump test for the monthly price of the CO2 emission allowance. The solid line represents observed jumps and the
dashed line represents the critical value of 10% and 5% levels, respectively.

Figure 5. Results of the jump test for the two monthly price of the CO2 emission allowance. The solid line represents observed jumps and
the dashed line represents the critical value of 10% and 5% levels, respectively.

of returns and the second component
(
ε2,t

)
causes infrequent

large moves in returns and are denoted as jumps.
(
ε1,t

)
is set

as a mean-zero innovation
(
E
[
ε1,t |�t−1

] = 0
)

with a normal
stochastic forcing process as

ε1,t = √
ht zt , zt ∼ N I D (0, 1) , (4)

And ht denote the conditional variance of the innovations,
given an information set of �t−1

ht = ω +
q∑

i=1

αiε
2
t−i +

p∑
j=1

β j ht− j , (5)

where p is the order of the GARCH terms; q is the order of the
ARCH term; αi is the i th-order ARCH coefficient; and β j is
the j th-order GARCH coefficient. ε1,t is contemporaneously
independent of ε2,t . ε2,t is a jump innovation that is also con-
ditionally mean zero

(
E
[
ε2,t |�t−1

] = 0
)

and we describe ε2,t

in next subsection.

3.2. The setting of jump dynamics

To capture the jump risk, the second component of innovation
is employed to reflect the large change in price and modelled
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Detecting and modelling the jump risk of C O2 emission allowances 7

as

ε2,t =
Nt∑

k=1

Vt,k − φλt , for k = 1, 2, . . . (6)

where Vt,k denotes the jump size for the kth jump with the jump
size following the normal distribution with parameters,

(
φ, θ2

)
,

that is Vt,k ∼ N I D
(
φ, θ2

)
. Thus,

∑Nt
k=1 Vt,k represents the

jump component affecting returns from t − 1 to t (period t)
with the jump frequency of Nt over the interval (t − 1, t). We
assume the distribution of jumps is to be Poisson with a time-
varying conditional intensity parameter (λt ). The conditional
density of Nt is

P (Nt = j |�t−1) = exp (−λt ) λ
j
t

j ! , j = 0, 1, 2, . . . , (7)

where the parameter λt represents the mean and variance for
the Poisson random variable, also referred to as the conditional
jump intensity. To facilitate the investigation of the jump effect
on the returns of CO2 emission allowances, we extend the
work of Chan and Maheu (2002), Maheu and McCurdy (2004),
and Daal et al. (2007) to specify the time-varying conditional
intensity parameter (λt ) as an ARMA form, which is

λt = λ0 + ρλt−1 + ς�t−1 (8)

where ρ measures jumps persistence and ς measures the sensi-
tivity of the jump frequency (λt ) to past shocks (�t−1). �t−1
represents the unpredictable component affecting our infer-
ence on the conditional mean of the counting process, Nt−1,
then this suggests corresponding changes. We also investigate
the constant jump effect, which represents a special case of
equation (8) with the restriction of constant jump intensity
(λt = λ0); this is imposed by setting ρ = 0 and ς = 0.

The conditional jump intensity in this model is time-varying,
with an unconditional value under certain circumstances. In
order to derive the unconditional value of λt , we must first
recognize that �t is a martingale difference sequence with
respect to �t−1, because:

E [�t |�t−1] = E [E [Nt |�t ] |�t−1] − λt = λt − λt = 0,

(9)

thus, E [�t ] = 0 and Cov (�t , �t−i ) = 0, i > 0.
Another way of interpreting this result is to note that, by

definition, �t is nothing more than the rational forecasting
error associated with updating the information set; that is,
�t = E [Nt |�t ] − E [Nt |�t−1]. Thus, Maheu and McCurdy
(2004) have pointed out several important features of condi-
tional intensity model. First, if the conditional jump intensity
is stationary, (|ρ| < 1), then the unconditional jump intensity
is equal to

E [λt ] = λ0

1 − ρ
(10)

Second, forecasts of λt+i , and therefore, the conditional vari-
ance of ε2,t+i , is straightforward to calculate. For example,
multi-period forecasts of the expected number of future jumps
are

E [λt+i |�t−1] =
{

λt i = 0
λ0
(
1 + ρ + · · · + ρi−1

)+ ρiλt i ≥ 1
(11)

Notice that the conditional jump intensity can be re-expressed
as:

λt = λ0 + (ρ − ς) λt−1 + ς E [Nt−1|�t−1] , (12)

where E [Nt−1|�t−1] is our ex post assessment of the expected
number of jumps that occurred from t − 2 to t − 1, which can
be obtained by

E [Nt−1|�t−1] =
∞∑
j=0

j P (Nt−1 = j |�t−1) (13)

where P (Nt−1 = j |�t−1) is the ex post inference on Nt−1
given time t − 1 information and referred as the filter in con-
ducting the ex post assessment. The details of the ARMA
jump setting and the process of the ex post assessment can be
referred to Chan and Maheu (2002) and Maheu and McCurdy
(2004). A sufficient condition for λt ≥ 0, for all t > 1, is
λ0 > 0, ρ ≥ ς , and ς > 0. To estimate the conditional jump
intensity, startup value of λt , �t , t = 1 must be set. We follow
Maheu and McCurdy (2004) approach to set the startup value
of the jump intensity to the unconditional value in equation
(10), and �1 = 0.

3.3. Parameter estimation

The parameters of the jump ARMA–GARCH model are esti-
mated using maximum-likelihood estimation (MLE) method.
We construct the likelihood function as follows. Let Fn (�)

denote the log-likelihood function and � is the parameter set
governing the jump ARMA–GARCH model, which implies
� = (C, ϑ1, ϑ2, ω, α, β, λ0, ρ, ς, φ, θ). We aim to find the
optimal parameters (�∗) to maximize the log-likelihood func-
tion. The log-likelihood function can be expressed as:

Fn (�) :=
N∑

t=1

log f (Rt |�t−1,�) (14)

In equation (14), the conditional density of return at time t
f (Rt |�t−1,�) for calculating log-likelihood function can be
obtained by integrating out the number of jumps as:

f (Rt |�t−1,�)

=
∞∑
j=0

f (Rt |Nt = j,�t−1,�) P (Nt = j |�t−1,�)

=
∞∑
j=0

1√
2π
(
ht + jθ2

) exp

(
− (Rt − μt + φλt − jφ)2

2
(
ht + jθ2

)
)

× exp (−λt ) λ
j
t

j ! (15)

where P (Nt = j |�t−1,�) denotes the conditional density as
shown in equation (7). f (Rt |Nt = j,�t−1,�) represents the
conditional density of returns given j jumps occurring up to
time t − 1 and follows a Gaussian distribution, that is

f (Rt |Nt = j,�t−1,�) = 1√
2π
(
ht + jθ2

)
× exp

(
− (Rt − μt + φλt − jφ)2

2
(
ht + jθ2

)
)

(16)
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8 S.S. Yang et al.

And the conditional density of Nt (P (Nt = j |�t−1,�)) is
shown in equation (7). Since we assume the time-varying con-
ditional intensity parameter (λt ) follow an ARMA form as
shown in equation (8), we need to work out the past shock
(�t−1) that affects the inference on the conditional mean of
the counting process first. �t−1 is defined as

�t−1 = E [Nt−1|�t−1,�] − λt−1

=
∞∑
j=0

j P (Nt−1 = j |�t−1,�) − λt−1 (17)

where E [Nt−1|�t−1,�] is given by equation (13). This ex-
pression could be estimated if P (Nt−1 = j |�t−1,�) are
known. Following Maheu and McCurdy (2004), the ex post
probability of the occurrence of j jumps at time t − 1 can be
inferred using Bayes’ formula as follows.

E [Nt−1|�t−1,�] =
∞∑
j=0

j P (Nt−1 = j |�t−1,�) =
∞∑
j=0

j
f (Rt−1|Nt−1 = j,�t−2,�) P (Nt−1 = j |�t−2,�)

f (Rt−1|�t−2,�)

=
∑∞

j=1
exp(−λt−1)λ

j
t−1

j !
1√

2π(ht−1+ jθ2)
× exp

(
− (Rt−1−μt−1+φλt−1− jφ)

2

2(ht−1+ jθ2)

)
f (Rt−1|�t−2,�)

(18)

The details of Bayes’ inference on calculating E[Nt−1|
�t−1,�] are presented in appendix 1. Thus, by iterating on
(8), (15) and (18), we can construct the log-likelihood function
and obtain the maximum-likelihood estimators. In addition,
equations (15), (17) and (18) involves an infinite summation
depending on the jumps.† We find that truncation of the infinite
sum in the likelihood at 10 captures all the tail probabilities and
gleans sufficient precision in the estimation procedure.

3.4. Analysis of goodness-of-fit and forecasting accuracy of
the jump ARMA(s, m)–GARCH(p, q) models

We examine the performance of the Jump ARMA–GARCH
Model using time series data for the CO2 emission allowance
price index. In particular, we investigate the jump intensity to
be time-varying or constant. Based on the data from BlueNext
for the period 26 February 2008–28 December 2012 (1205
observations), we select the ARMA(2,0)–GARCH(1,1) model
using the Box and Jenkins (1976) approach.‡

We further investigate the jump dynamics for both the
constant and dynamic jump models under the ARMA(2,0)–
GARCH(1,1) model. The parameter estimates and the
goodness-of-fit for these two jump ARMA(2,0)–GARCH(1,1)
models are presented in table 2.

We evaluate the performance of the jump model based on the
log-likelihood, theAkaike Information Criterion (AIC) and the

†Equation (15), (17) and (18) involve an infinite sum over the possible
number of jumps, Nt , In practice, for our model estimated we found
that the conditional Poisson distribution had zero probability in the tail
for values of Nt ≥ 10 and the likelihood and the parameter estimates
converge.
‡The details of the time series analysis and the parameter estimates
for the model are available upon request.

Bayesian Information Criterion (BIC), respectively.§ Accord-
ing to the log-likelihood, AIC and BIC criteria, the dynamic
jump ARMA–GARCH model provides better goodness-of-fit
results. The persistence parameter (ρ) in the dynamic jump
ARMA–GARCH model is significant and is estimated to be
0.8961. This result suggests that a high probability of many
(few) jumps today tends to be followed by a high probability of
many (few) jumps tomorrow. Recall that �t is the measurable
shock constructed by the econometrician using the ex post
filter. In a correctly specified model, �t should not display
any systematic behaviour.

To investigate the importance of the jump effect for mod-
elling CO2 emission allowance price returns, we also fit the
existing models proposed in the literature (Benz and Truck
2009, Daskalakis et al. 2009) such as the Black–Scholes model
(BSM), and mean reverting (MR), ARMA–GARCH (AMG)

and ARMA–EGARCH (AMEG) models. In addition, we com-
pare the performance of the jumpARMA–GARCH model with
that of the other jump diffusion models such as the Merton
(1976), Kou (2002) and the mean reverting jump diffusion (JD,
DEJD and MRJD) models, respectively. Among these models,
both jump models in Merton (1976), and the Kou (2002) and
mean reverting jump diffusion models allow for the jump effect
but do not consider the effects of autocorrelation and volatility
persistence. TheAMEG allows for asymmetric effects between
positive and negative asset returns.¶

Table 3 presents the goodness-of-fit results for different mod-
els. The empirical results demonstrate the superiority of the
jump ARMA–GARCH model over existing CO2 emission
allowance price return models. In addition, the DJAMG is an
improvement in terms of the log-likelihood, AIC and BIC over
the above models. Although the diffusion models proposed in
JD, DEJD and MRJD consider the jump effect, the models’per-
formance is even worse than that of the time series models that
consider the effects of autocorrelation and volatility clustering.
Therefore, the CO2 emission allowance price return model
that considers the three properties proves to be important. The
results in table 3 somewhat contradict the common finding of
mean reverting behaviour observed in commodities and energy
(see Schwartz 1997). Due to the addition of mean-reversion
appears to decrease the goodness-of-fit, especially in the case
of the JD and MRJD. These results are consistent with those
of Daskalakis et al. (2009).

In order to compare the models forecast performance, we
also examine the out-of-sample forecasting accuracy. Recall
that the in-sample period is the estimation period from 26

§AIC= 2/N ln(likelihood)+2/N× (number of parameters), (Akaike
1973); BIC = −2/N ln (likelihood) + ((number of parameters)
× ln(N ))/N . N is the sample size.
¶The stochastic processes of these models are available upon request.
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Detecting and modelling the jump risk of C O2 emission allowances 9

Table 2. Estimates of the CJAMG and DJAMG Model for the CO2
emission allowance spot price.

Parameter CJAMG DJAMG

C 2.49e−004 8.70e−004
(6.07e−004) (6.17e−004)

ϑ1 0.0349 6.63e−003
(0.0301) (0.0303)

ϑ2 −0.0519∗ −0.0693∗∗
(0.0299) (0.0297)

ω 5.51e−006∗∗ 3.16e−006∗
(2.75e−006) (1.77e−006)

α 0.0829∗∗∗ 0.0427∗∗∗
(0.0165) (9.39e−003)

β 0.8929∗∗∗ 0.9325∗∗∗
(0.0194) (0.0132)

λ0 0.0540∗ 0.0215∗
(0.0322) (0.0124)

ρ 0.8961∗∗∗
(0.0586)

ς 0.1453
(0.1035)

φ −9.54e−003 −0.0105∗∗
(8.59e−003) (4.24e−003)

θ 0.0486∗∗∗ 0.0325∗∗∗
(0.0125) (5.94e−003)

AIC −4.6373 −4.6508
BIC −4.5842 −4.5859
Log-likelihood 2786.9906 2795.1158

Notes: The symbols ∗, ∗∗ and ∗∗∗ denote significance at the 10%, 5% and 1%
levels, respectively. Standard errors are in parentheses.

Table 3. Model selection, 26 February 2008–28 December 2012.

Model Log-likelihood AIC BIC

BSM 2605.1910 −4.3243 −4.3158
MR 404.0948 −0.6657 −0.6530
AMG 2751.1712 −4.5776 −4.5423
AMEG 2758.8114 −4.5790 −4.5498
JD 2681.1440 −4.4454 −4.4243
DEJD 2700.0151 −4.4981 −4.4750
MRJD 2643.1281 −4.3997 −4.3765
CJAMG 2786.9906 −4.6373 −4.5842
DJAMG 2795.1158 −4.6508 −4.5859

Notes: Previous models in the literature, e.g. the Black–Scholes model (BSM),
the mean reverting (MR), ARMA–GARCH (AMG), ARMA–EGARCH
(AMEG), jump diffusion (JD), double exponential jump diffusion (DEJD),
mean reverting jump diffusion (MRJD), constant jump ARMA–GARCH
(CJAMG) and dynamic jump ARMA–GARCH (DJAMG) models.

February 2008 to 29 December 2011, while the out-of-sample
period covers the forecasting horizon, which is the one-year
period from 2 January 2012 to 28 December 2012. The out-of-
sample performance is measured by mean squared percentage
error (MSPE) and mean absolute percentage error (MAPE).† In
addition, we assess the statistical validation of various models

†The measurements which are used can be defined as:

M S P E = 1/N
∑N

t=1

((
St − Ŝt

)
/St

)2
, M AP E = 1/N

∑N
t=1∣∣∣(St − Ŝt

)
/St

∣∣∣ where St is the actual value of the CO2 emission

allowance price, Ŝt is the forecast value of the daily CO2 emission
allowance price and N is the number of observations.

according to Diebold and Mariano (1995) test.‡ All of the
evaluations for each model are based on forecasting the daily
CO2 emission allowance price.

Table 4 presents the results of the forecast performance.
Based on the two criteria of MSPE and MAPE, we find that
the DJAMG model has a better forecasting accuracy compared
with other models. In addition, the Diebold and Mariano (1995)
test also gives the statistical validation of the out-of-sample
comparisons that the DJAMG model outperforms other models
significantly. Our results are in line with Daskalakis et al.
(2009)** that the addition of jumps improves performance
significantly because the EUA spot prices are subject to large
movements that cannot be explained by standard diffusion
processes. Moreover, the proposed DJAMG model outper-
forms the JD model investigated in Daskalakis et al. (2009).§
Therefore, our study contributes two further findings. First,
the three properties of jump component, autocorrelation in the
conditional mean and the time variation in the conditional vari-
ance component are critical in modelling daily CO2 emission
allowance price. Taking into account the jumps but ignoring
the other two properties of autocorrelation in the conditional
mean and the time variation in the conditional variance com-
ponent still results in a larger forecasting error. Second, the
performance measures of MSPE or MAPE show both DJMAG
and CJMAG models outperform other models in terms of fore-
casting errors and the persistence parameter in the dynamics
jump ARMA–GARCH model is significant. Although we can-
not prove DJAMG model is better than the CJAMG model
statistically, our proposed jump model allows us to deal with
the CO2 emission allowance prices when relating to economic
and energy policies change.

4. Valuation of CO2 emission allowance option on futures

4.1. CO2 emission allowance option on futures

To better describe the CO2 emission allowance option on
futures, we define the following notation first:

• Ft : the value of the CO2 emission allowance futures
price at time t .

• St : the value of the CO2 emission allowance spot price
at time t .

• r : the risk-free interest rate using the 90-day Euribor
rate.

• δ: the current marginal net rate of convenience yield.
• T : the futures contract maturing at time T .

The futures price Ft (St , T ) at time t for a contract on St

maturing at time T is given by the standard cost-of-carry
relationship:

Ft (St , T ) = St e
(r−δ)(T −t) (19)

‡The Diebold and Mariano (1995) test is used to compare the
predictive accuracy of loss functions of different models. The null
hypothesis of the Diebold and Mariano (1995) test is that the two
models have the same MSPE or MAPE.
§Daskalakis et al. (2009) ignore the two properties of autocorrelation
in the conditional mean and the time variation in the conditional
variance for modelling CO2 emission allowance price.
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10 S.S. Yang et al.

Table 4. Forecasting error for different models, 2 January 2012–28
December 2012.

MSPE MAPE

Panel A: Model
BSM 0.02477 0.13579
MR 0.03554 0.16789
AMG 0.00985 0.08072
AMEG 0.00941 0.07815
JD 0.01002 0.08290
DEJD 0.00982 0.08178
MRJD 0.02092 0.11138
CJAMG 0.00831 0.07714
DJAMG 0.00819 0.07613

Panel B: Model comparison under D&M Statistics
BSM vs. DJAMG 4.583*** 4.703***
MR vs. DJAMG 5.113*** 5.821***
AMG vs. DJAMG 1.842* 1.886*
AMEG vs. DJAMG 1.689* 1.736*
JD vs. DJAMG 2.121** 2.145**
DEJD vs. DJAMG 2.030** 2.041**
MRJD vs. DJAMG 2.728*** 3.204***
CJAMG vs. DJAMG 1.285 1.390

Notes: Previous models in the literature, e.g. the Black–Scholes model (BSM),
the mean reverting (MR), ARMA–GARCH (AMG), ARMA–EGARCH
(AMEG), jump diffusion (JD), double exponential jump diffusion (DEJD),
mean reverting jump diffusion (MRJD), constant jump ARMA–GARCH
(CJAMG) and dynamic jump ARMA–GARCH (DJAMG) models. The null
hypothesis is that the two forecasts have the same MSPE or MAPE in the panel
B. D&M refer to the Diebold and Mariano (1995) test and the positive values
indicate superiority of our dynamic jump ARMA–GARCH model. ∗∗∗, ∗∗ and∗ denote significant relative to the asymptotic null distribution at the 1%, 5%
and 10%, respectively.

Furthermore, the CO2 emission allowance option on futures
can be expressed as:

C (t, T1, T ) = e−r1(T1−t)E Q [(Ft (St , T ) − K )+
]
. (20)

where K is the option strike price. The value C (t, T1, T ) at
time t of a call option expiring at time T1 (with T ≥ T1) and
r1 is the 30-day Euribor rate.

4.2. Risk neutral valuation framework under a jump
ARMA–GARCH model

The no arbitrage value of the CO2 emission allowance opt-
ion on futures depends on the dynamics of the CO2 emission
allowance price return dynamics. The empirical investigation
has found that the jump effect and the effects of autocorrelation
and volatility clustering cannot be ignored in modelling CO2
emission allowance price returns. As for the empirical findings
in this research, we propose a jump ARMA–GARCH model.
However, taking into account these realistic properties makes
the valuation problem for the option on the futures contract
in equation (20) more complicated. To achieve our goal, we
employ the conditional Esscher transform technique developed
by Bühlmann et al. (1996) to derive the risk neutral valuation
framework under the CO2 emission allowance price returns
following a jump ARMA–GARCH model.

The Esscher transform was introduced by Esscher (1932)
and has been widely applied to pricing financial and insurance
securities in an incomplete market. Gerber and Shiu (1994) cre-
ate an equivalent martingale measure by the Esscher transform

which is justified by maximizing the expected power utility
of an economic agent. Bühlmann et al. (1996) generalize the
Esscher transform to stochastic processes and introduce the
concept of the conditional Esscher transform. Siu et al. (2004)
employ the conditional Esscher transform to price derivatives,
assuming that the underlying asset returns follow GARCH pro-
cesses. In this paper, we utilize the technique of the conditional
Esscher transform to price the CO2 emission allowance price
return under a jump ARMA(s,m)–GARCH(p,q) model.

The exponential titling of X with respect to the reference
variable R is defined as

f ∗
X (x) = fX (x)

E [exp (a R) |X = x]

E [exp (a R)]
, (21)

where fX and f ∗
X represent the probability density function of

X before and after the exponential tilting, respectively. Chen
et al. (2010) have pointed out if choosing the reference R to
be the risk X itself, the exponential tilting is reduced to the
Esscher transform:

f ∗
X (x) = fX (x)

E [exp (a R) |X = x]

E [exp (a R)]

= fX (x)
exp (ax)

E [exp (aX)]
(22)

Bühlmann et al. (1996) generalize the Esscher transform to
a stochastic process and introduce to concept of the conditional
Esscher transform. In terms of probability density functions,
the conditional Esscher transform is defined as

f ∗
Xt

(x |�t−1) = fXt (x |�t−1)
exp (at x)

E [exp (at Xt ) |�t−1]
(23)

Thus, define a sequence {�t }N
t=0 with �0 = 1, and for t ≥ 1,

�t =
n∏

k=1

exp (ak Rk)

E [exp (ak Rk) |�k−1]
(24)

For some constant a1, a2, . . . , at . Bühlmann et al. (1996) prove
that {�t }N

t=0 is a martingale. Finally, we can adapt this pricing
framework when the underlying asset returns under a risk
neutral measure, Q, Rt |�t−1 ∼

(
r − 1

2 h∗
t , h∗

t

)
and the CO2

emission allowance return becomes

Rt = ln

(
St

St−1

)
= r − 1

2
h∗

t + ε
Q
t , (25)

where ε
Q
t = εt − at h∗

t follows a normal distribution with
mean 0 and variance h∗

t under measure Q. In other words, the
CO2 emission allowance price return dynamics under measure
Q are similar in form to those under measure P , albeit with
shifted parameters and with drift r − 1

2 h∗
t . See appendix 2 for

the derivation of the conditional Esscher parameters. Using the
conditional Esscher transform, we can go on to obtain the CO2
emission allowance price returns under measure Q and then
calculate the price of each option on futures contracts for the
CO2 emission allowance returns at time t under the equivalent
martingale measure Q can be evaluated using Monte Carlo
simulations.

4.3. Numerical analysis for the CO2 emission allowance
option on futures

We examine the value of the CO2 emission allowance option on
futures contracts in this section. To address the importance of
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Detecting and modelling the jump risk of C O2 emission allowances 11

Table 5. Base parameter values of the CO2 emission allowance
option on futures contracts.

Parameter Notation Initial value

CO2 emission allowance spot price S0 15.07
Option strike price K 15
Call option expiring at time T1 30
Futures expiring at time T 90
30-day Euribor rate r1 0.818%
90-day Euribor rate r 1.029%
Convenience yield δ 0

Table 6. CO2 emission allowance option on futures for various
models.

Model Option on futures

BSM 0.9743
MR 0.9118
AMG 1.0794
AMEG 1.0887
JD 1.0475
DEJD 1.0582
MRJD 1.0314
CJAMG 1.1081
DJAMG 1.1482

Notes: Previous models in the literature, e.g. the Black–Scholes model (BSM),
the mean reverting (MR), ARMA–GARCH (AMG), ARMA–EGARCH
(AMEG), jump diffusion (JD), double exponential jump diffusion (DEJD),
mean reverting jump diffusion (MRJD), constant jump ARMA–GARCH
(CJAMG) and dynamic jump ARMA–GARCH (DJAMG) models.

Table 7. Pricing error under the different CO2 emission allowance
options on futures for various models.

Model Pricing error (%)

BSM 15.145
MR 20.588
AMG 5.992
AMEG 5.182
JD 8.770
DEJD 7.838
MRJD 10.172
CJAMG 3.492
DJAMG –

Notes: Previous models in the literature include the Black–Scholes model
(BSM), the mean reverting (MR), ARMA–GARCH (AMG), ARMA–
EGARCH (AMEG), jump diffusion (JD), double exponential jump diffusion
(DEJD), mean reverting jump diffusion (MRJD) and constant jump ARMA–
GARCH (CJAMG) models.

different properties of the CO2 emission allowance in terms of
pricing its option on futures, in addition to the proposed jump
ARMA–GARCH model, we calculate the values of the option
on futures contracts based on various models such as the BSM,
MR, AMG, AMEG, JD, DEJD, MRJD and CJAMG models.
The pricing formula of the CO2 emission allowance option on
futures contracts using these different models is described in
appendix 3. We list the assumptions for the parameter values
of the CO2 emission allowance options on futures contracts in
table 5. The corresponding values and pricing errors for the
CO2 emission allowance option on futures values for different
models are displayed in tables 6 and 7, respectively.

We can discover the impact of jump risk and model risk
on the price of the CO2 emission allowance option on the
futures contract according to the results in tables 6 and 7.
Table 6 shows that the value of the CO2 emission allowance
option on futures ranges from 0.9118 to 1.1482. In table 7, the
pricing error ranges from 20.588% for the option on futures
using the MR model to approximately 3.5% when using the
CJAMG model, based on the option on futures prices valued
under the DJAMG model. We find that the MR model gives the
lowest value of 0.9118 for the CO2 emission allowance option
on the futures contract and the pricing errors are far larger
than for those in the DJAMG model. This indicates that the
CO2 emission allowance price does not have a mean reverting
process, and thus there is serious model risk. The empirical
results are consistent with the findings in Daskalakis et al.
(2009).

In addition, the Black–Scholes model gives a lower value
(0.9743) and larger pricing error (15.145%) for the CO2 emis-
sion allowance option on futures compared with the other CO2
emission allowance return models investigated in this research.
It indicates that we may significantly underprice the value of
the CO2 emission allowance option on futures if we ignore the
important properties of autocorrelation, volatility clustering
and the jump effect for the CO2 emission allowance price
dynamics.

Regarding the jump effect, in table 7, we observe the pric-
ing errors for using the AMG, CJAMG and DJAMG models
separately. The empirical analysis in section 2 has shown that
jump risk appears in the CO2 emission allowance return data
and we cannot ignore the jumps in modelling the CO2 emis-
sion allowance price dynamics and therefore price its option
on futures. Taking into account the jump effect increases the
value of the option on futures and reduces the pricing error by
approximately 6%. On the other hand, ignoring the dynamic
jump function gives rise to a 3.5% pricing error. However,
under different jump components, there is not much difference
between JD, DEJD and MRJD. Furthermore, when the effects
of autocorrelation and volatility clustering are considered, the
pricing error decreases from 8% to 10%. Finally, the proposed
dynamic jump ARMA–GARCH model gives the most sig-
nificant effect compared with other CO2 emission allowance
return models.

5. Conclusion

The overwhelming majority of scientists agree that our globe is
undergoing major climate change.They also agree that the level
of CO2 in the atmosphere is rising significantly. Managing the
risks caused by GHGs has become more and more important
globally. The financial markets in many countries have devel-
oped trading systems for a CO2 emission allowance certifi-
cate, which is one of the most powerful mechanisms available
to reduce national GHG emissions. In addition, a variety of
specialized financial instruments linked to the CO2 emission
allowance, such as a CO2 emission allowance option on fu-
tures, have been developed in several national and regional
emission markets. It thus becomes essential to understand the
properties of the CO2 emission allowance prices in the carbon
market.

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
he

ng
ch

i U
ni

ve
rs

ity
] 

at
 2

3:
10

 1
0 

D
ec

em
be

r 
20

15
 



12 S.S. Yang et al.

Developing a proper model that can capture the properties of
the CO2 emission allowance prices is the first step for pricing
the financial instruments linked to CO2 emission allowances.
Although many studies have not yet provided any conclusive
results with regard to the most appropriate model for capturing
the dynamics of the CO2 emission allowance in pricing its
futures contracts, they have made great efforts to discover the
properties of the CO2 emission allowance. However, the liter-
ature has not satisfactorily addressed the important property of
jumps regarding the emission allowance price. Based on the
present practice of the EU ETS, there are some driving forces
that could cause jumps (Borovkov et al. 2011). Therefore, this
study performs an empirical analysis to investigate the jump
effects with a CO2 emission allowance return series. By using
the Phase II data based on CO2 emission allowance spot prices
in the EU ETS, we find that the dynamics of the CO2 emission
allowance price has the following statistical property: a strong
positive autocorrelation effect among the log-returns, where
the volatility of the log-returns varies with time and a jump
effect that appears in the log-return series.

After validating these effects by comparing the various mod-
els with the in-sample and out-of-sample fitting performance,
we propose a jump ARMA–GARCH model to capture the
dynamics of CO2 emission allowance price and further develop
a framework for pricing CO2 emission allowance options on
futures contracts. Our numerical analysis shows that different
properties of the CO2 emission allowance affect the price of
CO2 emission allowance option on futures contracts to dif-
ferent extents. Although taking into account the jump effect
increases the value of options on futures, there is not much
difference under different jump components. The proposed
dynamic jump ARMA–GARCH model gives rise to the most
significant effect compared with other CO2 emission allowance
return models. Thus, ignoring the jump risk with the CO2
emission allowance price return would significantly underprice
CO2 emission allowance options on futures.
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Appendix 1.

We utilize the ex post assessment to calculate E
[
Nt−1|�t−1,�

]
. As

shown in equation (18), E
[
Nt−1|�t−1, �

] = ∑∞
j=0 j P(

Nt−1 = j |�t−1, �
)
. The P

(
Nt−1 = j |�t−1, �

)
is the ex post

inference on Nt−1 given the time t − 1 information and needs to
be estimated first. To calculate P

(
Nt−1 = j |�t−1,�

)
, we use the

Bayes rules. Thus, we can infer the ex post probability of the occ-
urrence of j jumps at time t − 1 as the filter. The construction the
filter shows as follows. Starting with the information available at
time t − 1

(
�t−1

)
, it contains the information on Rt−1 and previous

returns captured in �t−2. Thus, we can obtain the ex post probability
of the occurrence of j jumps at time t − 1 to evaluate equation (17).

P
(
Nt−1 = j |�t−1, �

) = P
(
Nt−1 = j |Rt−1,�t−2, �

) = P
(
Nt−1 = j, Rt−1, �t−2, �

)
P
(
Rt−1, �t−2, �

)
= f

(
Rt−1|Nt−1 = j, �t−2, �

)
P
(
Nt−1 = j |�t−2, �

)
P
(
�t−2,�

)
f
(
Rt−1|�t−2, �

)
P
(
�t−2,�

)
= f

(
Rt−1|Nt−1 = j, �t−2, �

)
P
(
Nt−1 = j |�t−2, �

)
f
(
Rt−1|�t−2, �

) (A1)

Thus, the EquationA1 is consistent with the equation (24) of Maheu
and McCurdy (2004).

Appendix 2.

To obtain the CO2 emission allowance price dynamic under a risk
neutral measure, we employ an equivalent martingale measure using
the conditional Esscher transform developed by Bühlmann et al.
(1996). Due to the discount CO2 emission allowance price under
the Q measure is a martingale, we have:

St−1 = E Q
(

Bt−1

Bt
St |�t−1

)
= E Q (exp (−r) St |�t−1

)
(B2)

We assume that the interest rate is fixed at r . Consequently, Bt =
Bt−1er . We obtain:

St−1 = e−r E Q (St |�t−1
) = e−r E P

(
�t

�t−1
St |�t−1

)

= St−1e−r E P (exp ((at + ι) Rt ) |�t−1
)

E P
(
exp ((at ) Rt ) |�t−1

) (B3)

Or equivalently,

er = E P (exp ((at + ι) Rt ) |�t−1
)

E P
(
exp ((at ) Rt ) |�t−1

) (B4)

To ensure the risk neutral Q to be an equivalent martingale measure,
we need to have

E Q [exp (Rt ) |�t−1
] = er (B5)

Because, Maheu and McCurdy (2004) pointed out the conditional
moments of return are

E
[
Rt |�t−1

] = μt

V ar
[
Rt |�t−1

] = ht +
(
φ2 + θ2

)
λt = h∗

t (B6)

Thus, Rt is normally distributed with mean μt and variance h∗
t , given

the information �t−1, we obtain

E Q [exp (ιRt ) |�t−1
] =

exp
(
(at + ι) μt + 1

2 (at + ι)2 h∗
t

)
exp

(
atμt + 1

2 a2
t h∗

t

)
= exp

((
μt + at h∗

t
)
ι + 1

2
h∗

t ι2
)

(B7)

Therefore,

E Q [exp (Rt ) |�t−1
] = exp

(
μt + at h∗

t + 1

2
h∗

t

)
(B8)

Through the equations (B5) and (B8), we have

μt = r − at h∗
t − 1

2
h∗

t (B9)

Similarly, the characteristic function of εt under martingale measure
Q is of the form:

E Q (exp (i�εt ) |�t−1
)

= E P
(

�t

�t−1
ei�εt |�t−1

)
=

E P
(

eat Rt ei�εt |�t−1

)
E P

(
exp ((at ) Rt ) |�t−1

)
=

exp (atμt ) E P
(

e(at +i�)εt |�t−1

)
exp

(
atμt + 1

2 a2
t h∗

t

) =
exp

(
1
2 (at + i�)2 h∗

t

)
exp

(
1
2 a2

t h∗
t

)
= exp

(
i�at h∗

t − 1

2
� 2h∗

t

)
(B10)

Consequently, εt under the measure Q become normally distributed,
with mean at h∗

t and variance h∗
t , given the information �t−1. That is,

given the information �t−1, ε
Q
t = εt − at h∗

t follow normally mean
0 and variance h∗

t under measure Q. Finally, the equation (1) can be
rewritten as:

Rt = ln

(
St

St−1

)
= μt + εt = r − at h∗

t − 1

2
h∗

t + ε
Q
t + at h∗

t

= r − 1

2
h∗

t + ε
Q
t (B11)

Appendix 3.

In this appendix, based on the empirical investigation, the properties
of the autocorrelation effect, volatility clustering and jump effect have
been investigated with CO2 emission allowance price return dynam-
ics. With these features, we can propose a jump ARMA–GARCH
model for pricing CO2 emission allowance options on futures, and
the expectation in equation (20) can be evaluated using Monte Carlo
simulations based on the risk neutral return process. For comparison
purposes, we also calculate the CO2 emission allowance options on
futures based on the different CO2 emission allowance price return
models mentioned in section 3. When the underlying CO2 emission
allowance price is assumed to follow a geometric Brownian motion,
the Black–Scholes formula can be applied to valuing the CO2 emis-
sion allowance option on futures. The exact formula is

C (t, T1, T )BSM = F (St , T ) e−r1(T1−t)N (d1)

− K e−r1(T1−t)N (d2) , (C12)
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where

d1 =
ln
(

F(St ,T )
K

)
+ σ 2

2 (T1 − t)

σ
√

T1 − t
,

d2 = d1 − σ
√

T1 − t

To investigate the jump effect, we also compare the price of the CO2
emission allowance option on futures based on the well-known jump
diffusion models by Merton (1976) and Kou (2002). Merton (1976)
implemented the jump diffusion model using a standard time homoge-
neous Poisson process with parameter λ dictating the arrival of jumps,
and the jump sizes follow a Gaussian distribution

(
N
(
φ, θ2

))
. m

denotes the average jump size if the Poisson event occurs. When
the CO2 emission allowance price return follows the Merton jump
diffusion model, the corresponding pricing formula for the option on
futures can be expressed as:

C (t, T1, T )J D = P (t, T1)

∞∑
j=0

[
e
(−λQ(T1−t)

)
λQ (T1 − t) j

j !

]

× [F (St , T ) N (d1) − K N (d2)] , (C13)

where d1 = ln
(

F(St ,T )
K

)
+ σ2

2 (T1−t)

σ
√

T1−t
, d2 = d1 − σ

√
T1 − t, λQ is the

risk-adjusted parameter under the risk neutral measure and P (t, T1)
is the price at time t of a zero coupon bond with maturity at time T1.

Differing from Merton (1976), Kou (2002) assumes that the jump
sizes are asymmetric double exponentially distributed to capture the
leptokurtic feature. The density function of the jump size is assumed
to be of the form:

fγ (y) = p · η1e−η1 y1{y≥0} + q · η2eη2 y1{y<0}, η1 > 1, η2 > 0

When the CO2 emission allowance price dynamic follows
Kou (2002)’s double exponential jump model, the pricing formula
for options on futures can be expressed as:

C (t, T1, T )DE J D

= e−r1(T1−t){F(St , T )�(r1 + σ 2

2
− λ�, σ, λ̂, p̂, η̂1, η̂2;

log(K/F(St , T )) + r1T1, T1)

− K�(r1 − σ 2

2
− λ�, σ, λ, p, η1, η2; log(K/F(St , T ))

+ r1T1, T1)}, (C14)

where p and q represent the probabilities of upward and downward
jumps and p, q ≥ 0, p+q = 1, p̂ = p

1+�
· η1
η1−1 , η̂1 = η1 −1, η̂2 =

η2 + 1, λ̂ = λ (� + 1), and � = pη1
η1−1 + qη2

η2+1 − 1. Equation
(C14) resembles the Black–Scholes formula for options on futures in
equation (C12) with � (•) taking the place of N (•). The details of
the derivation of the � (•) function can be found in Kou (2002).
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