
Chih-Ming Chen*, Jung-Ying Wang, & Chih-Ming Yu “Assessing the Attention Levels of Students by using a Novel 
Attention Aware System based on Brainwave Signals,” British Journal of Educational Technology, vol.48, no.2, 
348-369, 2017. [SSCI 收錄] (post print version) 

Assessing the Attention Levels of Students by using a 
Novel Attention Aware System based on Brainwave 

Signals 
 

Chih-Ming Chen1*, Jung-Ying Wang2, Chih-Ming Yu3 
 

1*Graduate Institute of Library, Information and Archival Studies, National Chengchi University, 
No. 64, Section 2, ZhiNan Road, Wenshan District, Taipei City 116, Taiwan, ROC 

2 Department of Multimedia and Game Science, Lunghwa University of Science and Technology, 
No. 300, Sec.1, Wanshou Rd., Guishan Shiang, Taoyuan County, Taiwan, ROC 

3 Department of Industrial Education, National Taiwan Normal University, No. 162, Sec. 1, 
HePing East Rd., Taan District, Taipei City 106, Taiwan, ROC 

Abstract 

Rapid progress in information and communication technologies (ICTs) has fueled the 
popularity of e-learning. However, an e-learning environment is limited in that online instructors 
cannot monitor immediately whether students remain focus during online autonomous learning. 
Therefore, this study tries to develop a novel attention aware system (AAS) capable of 
recognizing students’ attention levels accurately based on EEG signals, thus having high 
potential to be applied in providing timely alert for conveying low-attention level feedback to 
online instructors in an e-learning environment. To construct AAS, attention responses of 
students and their corresponding EEG signals are gathered based on a continuous performance 
test (CPT), i.e. an attention assessment test. Next, the AAS is constructed by using training and 
testing data by the NeuroSky brainwave detector and the support vector machine (SVM), a 
well-known machine learning model. Additionally, based on the discrete wavelet transform 
(DWT), the collected EEG signals are decomposed into five primary bands (i.e. alpha, beta, 
gamma, theta and delta) as well as each primary band contains five statistical parameters 
(including approximate entropy, total variation, energy, skewness and standard deviation), thus 
generating twenty five potential brainwave features associated with students’ attention level for 
constructing the AAS. An attempt based on genetic algorithm (GA) is also made to enhance the 
prediction performance of the proposed AAS in terms of identifying students’ attention levels. 
According to GA, the seven most influential features are selected from twenty-five considered 
features; parameters of the proposed AAS are optimized as well. Analytical results indicate that 
the proposed AAS can accurately recognize individual student’s attention state as either a high or 
low level, and the average accuracy rate reaches as high as 89.52%. Moreover, the proposed 
AAS is integrated with a video lecture tagging system to examine whether the proposed AAS 
can accurately detect students’ low-attention periods while learning about electrical safety in the 
workplace via a video lecture. Four experiments are designed to assess the prediction 
performance of the proposed AAS in terms of identifying the periods of video lecture with high- 
or low-attention levels during learning processes. Analytical results indicate that the proposed 
AAS can accurately identify the low-attention periods of video lecture generated by students 
when engaging in a learning activity with video lecture. Meanwhile, the proposed AAS can also 
accurately identify the low-attention periods of video lecture generated by students to some 
degree even when students engage in a learning activity by a video lecture with random 
disturbances. Furthermore, strong negative correlations are found between the students’ learning 
performance (i.e. posttest score and progressive score) and the low-attention periods of video 
lecture identified by the proposed AAS. Results of this study demonstrate that the proposed AAS 
is an effective attention aware system, capable of assisting online instructors in evaluating 
students’ attention levels to enhance their online learning performance. 
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1. Introduction 

In traditional face-to-face instruction, teachers generally observe students’ facial expressions 
to determine whether they are sufficiently attentive. However, this method is excessively 
subjective and consumes a significant amount of the teacher’s energy (Liu, Chiang, & Chu, 
2013). In addition to face-to-face instruction, e-learning allows students to learn at anytime and 
anywhere. However, students may become easily distracted in e-learning environments, owing to 
the absence of teacher’s face-to-face supervision (Zhang, Zhou, Briggs & Nunamaker, 2006; Liu, 
Chiang, & Chu, 2013). However, while attention significantly affects learning performance, 
maintaining a high degree of attention among students on e-learning activities for an extended 
period is a challenging task (Chen & Huang, 2014). Among the several types of attention 
affecting learning performance include sustained, selective, spatial, focused, shifting, and 
divided attention (Driver, 2001; Lezak, Howieson & Loring, 2004; Wager, Jonides & Reading, 
2004). According to Hedges et al. (2013) different classroom activities may be related to 
different aspects of attention. Their study pointed out that sustained attention may be connected 
to the learning attentiveness of students to the teacher’s instruction throughout a lesson. Smith, 
Colunga and Yoshida (2010) noted that effective learning depends on sustained attention, and 
sustained attention plays a major role in aggregating, acquiring, and applying knowledge. 
Moreover, a related study highlighted the importance of sustained attention in cognitive 
psychology, owing to its strong correlation with learning performance (Steinmayr, Ziegler, & 
Träuble, 2010). 

Despite the importance of maintaining sustained attention during a learning activity to 
ensure successful learning, evaluating whether students maintain their concentration on a 
learning activity is extremely difficult, owing to the lack of supervised mechanisms to monitor 
their attention states. Several studies have attempted to elevate learning performance in 
e-learning environments by developing e-learning systems with an attention aware model to 
evaluate students’ attention states (Chen & Huang, 2014; Hsu, Chen, Su, Huang, & Huang, 2012; 
Liu, Chiang, & Chu, 2013). Although highly promising for use of EEG signals in developing 
attention aware systems, EEG signals are highly prone to noise interference. As a voltage signal 
that arises from synchronized neural activity, the human EEG signal is fired by millions of 
neurons in the brain. Moreover, human EEG signals contain several frequency bands, several 
studies (Lutsyuk, Éismont, & Pavlenko, 2006; Belle, Hargraves, & Najarian, 2012) have 
confirmed that the relative level of activity within each frequency band is associated with 
attentional processing. Importantly, the human EEG signals must be enhanced by the amplifier 
because they are generally measured by weak electrical signals of the brain. Therefore, 
developing an engineering approach that can accurately measure learners’ attention levels based 
on EEG signals still remain an extremely challenging task. Currently, a thinkGear™ eSense 
algorithm that can identify attention levels accurately to some degree based on human EEG 
signals has been developed by Neurosky Company (San Jose, CA, USA) 
(http://www.neurosky.com/). However, this algorithm was never addressed in any academic 
literature due to patent protection. Fortunately, recently developed non-invasive EEG 
measurement technologies have become increasingly mature and capable of providing a 
convenient means of monitoring human brain activity. Thus, this study tries to develop a novel 
attention aware system (AAS) based on raw human EEG signals sensed by Neurosky’s 
MindWave earphone to fill the research gap. Additionally, this study also integrates the proposed 
AAS with a video lecture tagging system so that the integrated system has high potential to be 
applied in providing timely alert for conveying low-attention level feedback to online instructors 
in an e-learning environment. 

2. Literature Review 
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2.1  Effects of sustained attention on learning performance in e-learning 
environments 

Attention research has played a major role in psychology for over four decades. James (1983) 
defined attention as a psychological process comprised of focus and concentration, which 
enhances cognition speed and accuracy. In particular, attention is closely related to learning 
performance (Chen & Huang, 2014; Chen & Lin, 2014). Broadbent (1958) indicated that 
identification, effective learning and memory are impossible when learning without attention. 
Restated, learning is ineffective when a learner neglects learning content, explaining why 
instructors should improve learning quality by stressing learner attention and providing effective 
strategies. Teachers normally observe students’ facial expressions to determine whether they are 
concentrating on learning targets during traditional face-to-face instruction. However, this overly 
subjective approach expends a significant amount of the teacher’s energy (Liu, Chiang, & Chu, 
2013). Besides face-to-face instruction, students may use e-learning to perform autonomous 
learning. Despite their convenience owing to no location or time constraints, e-learning courses 
lack the informal social interaction and face-to-face contact of traditional classroom training. 
Assessing students’ attention states in e-learning environments is thus more difficult than doing 
so during face-to-face instruction. 

Among the different forms of attention, sustained attention is especially related to e-learning 
performance (Chen & Huang, 2014). Sustained attention describes a subject’s state of readiness 
to detect rare and unpredictable changes in a stimulus over an extended period (Sarter, Givens, & 
Bruno, 2001). Chen and Huang’s study (2014) confirmed the existence of a correlation between 
the reading comprehension and sustained attention for learners who apply the attention-based 
self-regulated learning mechanism (ASRLM) for online reading of annotated English texts. 
Based on their design of a mobile reading experiment with a two-factor experimental design, 
Chen and Lin (2014) evaluated how selected static, dynamic, mixed, and designed text display 
types (which were presented in sitting, standing, and walking contexts, respectively) affect the 
reading comprehension, sustained attention, and cognitive load of learners. According to their 
results, reading comprehension of learners in the high-reading-comprehension group was 
significantly and positively correlated with sustained attention. Apparently, as the premise of 
effective sustained attention to learning content allows students to focus on learning content and 
improve their performance in e-learning environments. 

2.2 Attention aware technologies 

Two attention measures are commonly used to assess a learner’s degree of attention. One 
measure is an attention scale with a set of questions answered by a learner to determine whether 
the learner concentrates on learning targets (Das, 1986). The other measure develops attention 
aware systems to identify a learner’s attention level based on human behaviors (Ba & Odobez, 
2009; Ba & Odobez, 2011; Stiefelhagen, Yang & Waibel 2002; Toet, 2006) or physiological 
signal measurements (Belle, Hargraves, & Najarian, 2012; Moradi, Buracˇas, & Buxton, 2012; 
Chen & Lin, 2014). Roda and Thomas (2006) defined attention aware systems as systems 
capable of supporting human attentional processes. These systems should include three major 
features: identification of learner’s current attentional state, identification and evaluation of 
possible alternative attentional states, and creation of focus switch or maintenance-related 
strategies. In contrast to an attention scale assessed after learning, attention aware systems 
provide insight into what information students are studying, and when they have acquired that 
information. According to Rapp (2006), attention aware systems may provide benefits of 
teaching diverse learners, assessing student performance, providing feedback during curriculum 
development, and adding value to computer-assisted teaching methodologies. Importantly, 
attention aware systems provide a dynamic approach for online instructors to receive feedback 
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on their instructional designs and direct student attention during computer-based instruction. 
Restated, students must be guided to focus on certain aspects of lessons in order to facilitate their 
comprehension of material because online learners have considerable freedom to engage in 
learning activities. The ability of online learning courses to incorporate attention aware 
functionalities would greatly facilitate learners in completing their learning tasks. Attention 
aware systems should thus be viewed as an additional component of the educators’ assessment 
toolkit (Rapp, 2006). 

Many human behaviors, including head pose tracking (Ba & Odobez, 2009; Ba & Odobez, 
2011), face tracking (Stiefelhagen, Yang & Waibel, 2002), and eye gaze tracking, are used in 
developing attention aware systems (Toet, 2006). However, with advances in the assessment of 
human physiological signals, e-learning research has increasingly used physiological signals to 
determine students’ attention levels (Chen & Huang, 2014; Hsu, Chen, Su, Huang, & Huang, 
2012). Related efforts in recent years have assessed learners’ emotions by using human 
physiological signals, such as heart rate variability (HRV) and Electroencephalography (EEG) 
(Chen & Sun, 2012; Chen & Wang, 2011) and attention (Chen & Lin, 2014; Rebolledo-Mendez 
et al., 2009). Moreover, EEG signals have also been successfully applied in computer-based 
assessment (Wolpaw, McFarland, Neat, & Forneris, 1991), brain-computer interface (Schalk, 
McFarland, Hinterberger, Birbaumer, & Wolpaw, 2004; Wolpaw & Birbaumer, McFarland, 
Pfurtscheller, & Vaughan, 2002), visual-aural attention modeling (Zheng, Zhu, Jiang, & Huang, 
et al., 2008), classification of human emotion (Murugappan, Nagarajan & Yaacob, 2010) and 
assessment of learning performance (Harmony, Feranndez, Antonio, Juan, Bosch, Lourdes, & 
Galan, 2001). Of previous studies that developed attention aware systems based on physiological 
signals, Hsu, Chen, Su, Huang and Huang (2012) developed a reading concentration monitoring 
system to facilitate reading activity with e-books in order to allow instructors to more thoroughly 
understand students’ reading concentration states. By using three sensors (i.e. webcam, heartbeat 
sensor, and blood oxygen sensor) to capture various physiological signals of students, their study 
evaluated their reading concentration. Analytical results indicated that their reading 
concentration monitoring system allows instructors to more thoroughly understand the students’ 
reading concentration states in an intelligent classroom learning environment. Chen and Huang 
(2014) also applied the MindSet earphone developed by NeuroSky that can identify attention 
levels based on human EEG signals to develop a web-based reading annotation system with an 
attention-based self-regulated learning mechanism to enhance the sustained attention of learners 
while reading annotated English texts online, thereby promoting online reading performance. 
According to their results, sustained attention and reading comprehension of the experimental 
group with an attention-based self-regulated learning mechanism for web-based collaborative 
reading are better than those of the control group without an attention-based self-regulated 
learning mechanism. Moreover, Liu, Chiang and Chu (2013) identified whether students are 
attentive or inattentive during instruction by using EEG signals. Based on use of the support 
vector machine (SVM), their study analyzed features to identify the optimum combination of 
features that indicates whether students are attentive. The proposed method in their study 
provides a classification accuracy of up to 76.82%. While attempting to assess the sustained 
attention of learners and further increase their sustained attention on learning targets in order to 
improve learning performance in e-learning environments, this study thus develops a novel AAS 
to assess students’ attention levels in real time based on human EEG signals. 

2.3  Assessing sustained attention 

Several tests have been developed for evaluating human attention based on self-reports by 
human subjects, including the Stroop color-word interference test, Talland letter cancellation test, 
trail making test, digit symbol substitution test, continuous performance test, and Wisconsin card 
sorting test, (Mirsky & Anthony et al, 1991). Of the methods to evaluate human attention, the 

‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y



 
 

5 
 

continuous performance test (CPT) (Rosvold, Mirsky, Sarason, Bransome, Edwin, & Beck, 1956) 
is widely used to evaluate sustained attention and selective attention. Sustained attention 
involves direct and focus cognitive activity on some continuous activity over a certain period, 
whereas selective attention focuses on task-relevant cues and ignores background noise or 
distraction. By using CPT, several studies have identified children with attention-deficit 
hyperactivity disorder (ADHD) (Li, Gratton, Yao, & Knight, 2010; Sohn, Kim, Lee, Peterson, 
Hong, Chae, Hong, & Jeong, 2010). Moreover, by using CPT, Ghassemi et al. (2009) defined the 
level of sustained attention. Their study also used the morphological features of EEG’s 
independent components to serve as input features of the classifier model, i.e. linear discriminant 
analysis (LDA), for identifying the sustained attention level. According to their results, 
significant correlations exist between the level of sustained attention identified by CPT and 
certain features of EEG signals. 

Based on the reliability of CPT in evaluating human sustained attention, this study develops 
an AAS based on the supervised machine learning model－support vector machine (SVM). 
Students’ attention responses and their corresponding EEG signals on a CPT are gathered by the 
NeuroSky MindWave headset. These patterns are then assigned as training and testing data. Next, 
feature selection is performed using the genetic algorithm (GA) to optimize the considered 
attention features of EEG signals. Additionally, the proposed AAS is integrated with a video 
lecture tagging system to examine the ability of the proposed AAS to accurately identify the 
high- and low-attention levels of learners when they are watching a video lecture for autonomous 
learning. Importantly, the proposed AAS can assist online instructors in assessing whether 
learners maintain their focus on a learning activity in an online learning environment. 

3. Research Methodology 

3.1 Gathered training and testing data for constructing AAS 

Ten invited volunteers’ attention responses and their corresponding EEG signals on the CPT 
(Cohen & Servan-Schreiber, 1992) were collected as training and testing data to construct the 
AAS. Figure 1 shows an example of the CPT. During CPT, one must maintain the task 
instruction of responding only when a specific stimulus (‘A’) is followed by another specific 
stimulus (‘X’), as well as holding in mind, each stimulus representation until a decision of 
whether to respond can be made. Namely, the test focuses on identifying the ‘AX’ pattern from 
CTP; the other patterns are non-target patterns. Rosvold, Mirsky, Sarason, Bransome, and Beck 
(1956) demonstrated that the CPT as a measure of sustained attention was highly sensitive to 
brain damage or dysfunction. Riccio, Reynolds, Lowe and Moore (2002) argued that CPT 
performance can be viewed as symptom specific (attentional disturbance), but it is not disorder 
specific (e.g., ADHD). To gather the EEG signals correctly, ten healthy graduate students were 
reminded to click the right mouse button when the CPT appears with the target pattern ‘AX’, and 
to click the left mouse button for the non-target patterns. CPT generally lasts for several minutes 
to assess the maintenance of focused attention (Clark, Kempton, Scarnà, Grasby, & Goodwin, 
2005). Several functions are critical to successful performance in CPT, which includes encoding 
the stimulus (task-relevant information), maintaining task instruction and the stimuli in working 
memory, and generating an appropriate response while inhibiting inappropriate responses (Lee & 
bPark, 2006). Restated, any difficulty at each step could result in a CPT error. 

Additionally, to consider possible EEG signal variations because of gender differences 
(Limbu, Sinha, Sinha, & Paudel, 2015), EEG signals were collected from ten healthy graduate 
students including five males and five females, who wore MindWave headsets developed by 
NeuroSky, while performing CPT, in this study. The MindWave headset, which can measure and 
output the power spectra of EEG signals, is a reliable equipment to assess human brainwaves 
(NeuroSky MindWave, 2015; http://press.neurosky.com/MindWave.html). The MindWave 
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headset consists of a headset, and sensor arm. The MindWave headset, which resembles a 
standard stereoscopic wireless earphone, uses a comfortable noninvasive dry electrode, with 
which users merely wear an earphone and place the earphone’s forearm on their foreheads to 
measure EEG signals. Sampling rate of the MindWave headset for gathering human EEG signals 
is 512 HZ and all sampling data can be saved into a computer by a CSV file format. In this study, 
the time series data of EEG signals was obtained when an examinee completed CPT. The time 
series data were then divided into separate time slots, based on the clicking time of each CPT 
trial, to identify the ‘AX’ pattern. Next, the obtained brainwaves in separate time slots were 
labeled as the positive class (i.e. high-attention level class) if the examinee responded correctly 
when identifying the ‘AX’ pattern in CPT; otherwise, they were labeled as the negative class (i.e. 
low-attention level class). Totally, 2,787 brainwave data were collected, including 1,988 
brainwave data with a high-attention level and 799 brainwave data with a low-attention level. 

 
Figure 1. An example of the CPT 

3.2  Preprocessing of EEG data and feature selection 

After the EEG data were labeled, features associated with high and low attention levels were 
extracted from the raw EEG signals by using the discrete wavelet transform (DWT). In this study, 
2,787 data were obtained, in which approximately 3/4 (2100 data) were randomly selected as 
training data; the remaining 1/4 (687 data) were selected as the testing data. Next, based on a 
fourth-order DWT, the gathered EEG signals were decomposed to five bands, including α 
activity, β activity, γ activity, θ activity, and δ activity (Sanei & Chambers, 2007; Gregory & 
Pettus, 2005). Additionally, five statistical parameters (i.e. approximate entropy, total variation, 
energy, skewness and standard deviation) were calculated for each band. Therefore, each EEG’s 
training or testing data include 25 features. Figure 2 shows the architecture of DWT for 
extracting potential EEG features associated with human attention level. Based on feature 
selection for the 25 considered features by GA, this study found that most relevant features 
associated with attention-level classification are γ-approximate entropy, γ-total variation, 
β-approximate entropy, β-total variation, β-skewness, α-total variation, and θ-energy. Restated, 
the highest prediction accuracy of attention level achieved under the above seven features are 
considered. 

The α activity indicates that the brain is in a state of relaxation, detected either by EEG or 
MEG; the β activity originates mainly from the frontal lobe and is associated with normal 
waking consciousness and alert. Also, the γ activity is related to gestalt perception and cognitive 
functions such as attention, learning, perception, cognition, and memory (Kaiser & Lutzenberger, 
2003). Some studies have also suggested that γ activity is related to selective attention 
(Herrmann & Mecklinger, 2001; Lee, Williams, Breakspear, & Gordon, 2003); the θ activity 
occurs mainly in the parietal and temporal regions of the cerebrum. This activity can be observed 
during drowsy, meditative, or sleeping states. Evidence suggests that EEG oscillations in the θ 
band are a recall of working memory representations and are involved in active maintenance 
(Lee, Williams, Breakspear, & Gordon, 2003); δ activity is normally associated with the deepest 
stages of sleep, lacking oxygen, unconscious, or anesthetized. Moreover, the parameters of 
energy, skewness and standard deviation are common statistical characteristic measures. 
Therefore, this study only briefly explains the less familiar approximate entropy and the total 
variance. As a measure used to quantify the creation of information in a time series (Pincus, 
1991), the approximate entropy is a time domain feature and is also widely considered an 
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important feature in EEG data processing (Sabeti, 2009; Yuan, 2011; Yun, 2012; Chen, Luo, 
Deng, Wang & Zeng, 2009). In statistics, an approximate entropy is a technique used to quantify 
the amount of regularity and the unpredictability of fluctuations over time-series data (Pincus, 
Gladstone, & Ehrenkranz, 1991). In mathematics, the total variance can be used based on specific 
circumstance to define and explain. It is widely used in image denoising (Rudin, Osher & Fatemi, 
1992) and numerical analysis of differential equations (Zhao & Xu, 2010). Total variance in the 
data refers to the sum of the variances of the individual components. A larger value of total 
variance implies a rapid fluctuation of a selected time interval, and vice versa. 

 
Figure 2. The architecture of DWT for extracting potential EEG features associated with human 
attention level 

3.3  Proposed AAS constructed by GA-LIBSVM 

This study developed the AAS based on seven selected EEG features by using a library for 
support vector machines (LIBSVM) (http://www.csie.ntu.edu.tw/~cjlin/libsvm/) (Chang & Lin, 
2011), which is an integrated software for support vector classification. Several kernel functions 
can map input feature spaces with non-linear distribution to higher dimensional spaces, allowing 
for input feature spaces to become a linear distribution while using LIBSVM for classification. 
The radial basis function (RBF) was selected here as the kernel function for LIBSVM, owing to 
its appropriateness for most classification problems. Moreover, the two parameters of LIBSVM, 
including the penalty parameter C and parameter γ of the kernel function of RBF, must be 
appropriately determined in advance. Selecting the optimal parameters of LIBSVM to construct 
the AAS is especially important since it enhances the classification performance. Notably, 
LIBSVM can automatically determine these two parameters using the grid parameter search 
approach (Chang & Lin, 2011). Therefore, based on the grid parameter search approach, this 
study attempted to find the near-optimal parameters for the penalty parameter C and the 
parameter γ of the kernel function of RBF. Moreover, feature selection was performed for the 
twenty-five considered features by using the GA to identify the key features associated with 
attention level for training LIBSVM in order to construct the AAS. This study thus named 
LIBSVM with GA-based feature selection as GA-LIBSVM. Figure 3 shows the flowchart of the 
used GA-LIBSVM algorithm for constructing the AAS. 

‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y



 
 

8 
 

 
Figure 3. The flowchart of the employed GA-LIBSVM algorithm for constructing the AAS 

3.4 Integrating the proposed AAS with a video lecture tagging system 

Figure 4 shows the user interface of integrating the proposed AAS with a video lecture 
tagging system, which contains a playing panel of a video lecture, a display interface of 
low-attention periods labeled by learners, and a display interface of low-attention periods 
identified by the proposed AAS. A learner can label any periods of the video lecture with 
low-attention level by clicking the “low-attention” button of the user interface of the integrated 
system after viewing a video lecture. The integrated system then records the learner’s 
low-attention periods and displays them on the upper left screen (Fig. 5). After the learner 
finishes viewing the video lecture, the integrated system accurately predicts all low-attention 
periods of the learner based on the EEG signals by the proposed AAS. Meanwhile, the learner 
can click the “load” button on the lower left portion of the screen to display the low-attention 
periods predicted by the proposed AAS (Fig. 6). Additionally, the integrated system also 
provides a convenient graphical user interface that can simultaneously display the low-attention 
periods respectively labeled by the learner and predicted by the proposed AAS (Fig. 7). The 
graphical user interface is very convenient for learners to determine whether the low-attention 
periods identified by the proposed AAS are consistent with the low-attention periods labeled by 
the learner. Additionally, the system of integrating the proposed AAS with a video lecture 
tagging system can identify the periods of video lecture that lead to learners with low-attention 
level to online instructors based on learners’ EEG signals while performing a learning activity by 
video lecture. Thus, the proposed AAS has high potential to be applied in providing timely alert 
for conveying low-attention level feedback to online instructors in an e-learning environment. 

‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y



 
 

9 
 

 
Figure 4. The user interface of integrating the proposed AAS with a video lecture tagging 
system 

 
Figure 5. The display interface of low-attention periods labeled by a learner 
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Figure 6. The display interface of low-attention periods of a learner identified by the proposed 
AAS 

 
Figure 7. The graphical user interface of the integrated system for simultaneously showing the 
low-attention periods labeled by learner and identified by the proposed AAS 

3.5  Experimental design for assessing the prediction performance of the 
proposed AAS 

Based on the integrated system that combines the proposed AAS with a video lecture 
tagging system, this study also examined the prediction performance of the proposed AAS for 
learners engaging in a learning activity with video lectures. Several learners were invited to learn 
about electrical safety in the workplace by the playing the interface of the video lecture in the 
integrated system. The integrated system can identify the learners’ high or low attention periods 
while learning from the video lecture. Meanwhile, learners can label any periods of the video 
lecture with low-attention level while learning during the video lecture by clicking the 
“low-attention” button on the integrated system. Following completion of the learning process, 
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the periods of video lecture with low-attention level respectively labeled by the learners and 
predicted by the proposed AAS are simultaneously displayed on a display interface to allow 
learners to review the identified periods of the video lecture with low-attention level. 

By using precision rate, recall rate, and F-measure as the evaluation measures of prediction 
performance, this study assessed the consistent degree of low-attention periods labeled by 
learners and predicted by the proposed AAS. The mathematical formulations of the three 
evaluation measures are expressed as follows: 

)  (#

)    (#

itemsidentified

identifieditemsrelevant
RatePrecision                                         (1) 

where #(relevant items identified) denotes the number of low-attention periods identified by the 

proposed AAS that are also labeled by the learner, and #(identified items) represents the number 

of low-attention periods identified by the proposed AAS. 

)  (#

)    (#

itemsrelevant

identifieditemsrelevant
eRecall Rat                                  (2) 

where #(relevant items identified) refers to the number of low-attention periods identified by the 

proposed AAS that are also labeled by learners, and #(relevant items) is the number of 

low-attention periods labeled by learners. 

eRecall RatRatePrecision 

eRecall RatRatePrecision 
2measureF




                                (3) 

where F-measure is a monotonic measure which simultaneously combines the precision and 
recall rates. 

In addition to assessing the prediction performance of the proposed AAS, this study also 
designed four experiments to confirm whether the proposed AAS can indeed identify the periods 
of video lecture with a low-attention level generated by the research participants and manually 
adding disturbances that may disperse the attention of research participants, whether participants’ 
agreement degree on the periods of video lecture with a low-attention level identified by the 
proposed AAS is high, and whether the low-attention periods of video lecture identified by the 
proposed AAS significantly correlate with the posttest scores and progressive scores of the 
participants. The aim is to confirm the effects of the proposed AAS on identifying low-attention 
level generated by the research participants from four different perspectives. The four 
experiments are detailed as follows: 

(1) Experiment 1 

Four graduate students aged 22-23 from The Department of Industrial Education of National 
Taiwan Normal University were invited as research participants to view a 16-minute video 
lecture on electrical safety in the workplace. Following the learning activity, the periods of video 
lecture with a low-attention level labeled by the participants and those predicted by the proposed 
AAS were compared and evaluated based on the precision rate, recall rate, and F-measure. 

(2) Experiment 2 

Four graduate students who are the same with the research participants in the experiment 1 
were invited to view a 10-minute video lecture on electrical safety in the workplace in which 
seven disturbances were made during the lecture. Each disturbance, including sound and small 
icons, was manually added into the 10-minute video lecture to disperse the attention of 
participants. The periods of video lecture with disturbances are assumed here to lead to 
low-attention levels. Following completion of the learning activity, this study confirmed whether 
the proposed AAS can successfully identify the periods of the video lecture with disturbance as 
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the learning periods with a low-attention level. Experiments 1 and 2 have the same performance 
evaluation method. 

(3) Experiment 3 

Four graduate students who are the same with the research participants in the experiments 1 
were invited to view a 10-minute video lecture on electrical safety in the workplace. All 
participants were then invited to fill in an attention survey questionnaire with a 5-point Likert 
scale in order to assess their agreement degree on the periods of video lecture with a 
low-attention level identified by the proposed AAS. 

(4) Experiment 4 

Eight graduate students who include the same four research participants in the experiments 1 
and four adding research participants were invited to view a 16-minute video lecture on electrical 
safety in the workplace. The pretest was conducted before the eight participants engaged in the 
learning activity. All participants then participated in the learning activity with the video lecture. 
Thereafter, they were guided to review the low-attention periods of video lecture identified by 
the proposed AAS. Following completion of the learning process, a posttest was performed. 
Finally, based on Pearson product-moment correlation analysis, this study also assessed whether 
a significantly negative correlation exists between the low-attention periods of video lecture 
identified by the proposed AAS and the posttest score as well as whether a significantly negative 
correlation exists between the low-attention periods of video lecture identified by the proposed 
AAS and the progressive score. If the significantly negative correlations exist, then imply that 
increasing the identified low-attention periods of video lecture will lead to that the posttest 
scores and progressive scores of the learners decrease as well. That is, the proposed AAS can 
accurately identify the low-attention periods of video lecture that the learners generated when 
they engaged in a learning activity with a video lecture. 

4. Analytical Results 

4.1 Assessment of the proposed AAS in terms of prediction accuracy 

In this experiment, 2,787 EEG data were obtained, in which approximately 3/4 (2100 data) 
were randomly selected as training data; the remaining 1/4 (687 data) were selected as the testing 
data. Table 1 shows the prediction accuracy of the proposed AAS on the high- and low-attention 
levels evaluated by testing data under automatically determined learning parameters, including 
the penalty parameter C and parameter γ of the kernel function of RBF. Analytical results 
indicate that the prediction accuracy rates on the high- and low-attention levels are 91.60% and 
87.44% under the automatically determined learning parameters by the grid parameter search 
approach in LIBSVM (C = 98 and γ = 0.001217), respectively. The overall prediction accuracy 
of the proposed AAS on the high- and low-attention levels is as high as 89.52 %. Those results 
demonstrate that the correct ratio of high-attention level is higher than that of low-attention level. 
This finding implies that the learner’s high-attention level based on EEG signals is more easily 
identified than the low-attention level, possibly owing to more noise interference in the EEG 
signals with low-attention level. 

Table 1. The prediction accuracy of the proposed AAS on the high- and low-attention levels 
The Identified Attention Level 

Number of Correct 
Prediction 

Number of Incorrect 
Prediction 

Prediction 
Accuracy (%) 

High-attention level 447 41 91.60% 
Low-attention level 174 25 87.44% 

High- and low-attention level 621 66 89.52 % 
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4.2 Comparison of low-attention periods labeled by the learners and 
predicted by the proposed AAS 

Four graduate students were invited to view a 16-minute video lecture on electrical safety in 
the workplace. Following completion of the learning activity, the low-attention periods labeled 
by the learners and predicted by the proposed AAS were compared based on the precision rate, 
recall rate and F-measure. Table 2 summarizes those results. According to those results, the 
average precision rate, recall rate and F-measure are 48.32%, 74.75%, and 0.5853, respectively. 
The highest precision rate, recall rate and F-measure are 61.36%, 94.78%, and 0.7047, 
respectively. Those results shown in Table 2 demonstrate that the proposed AAS identify 
correctly the low-attention periods of learners to some degree when they engage in a learning 
activity by a video lecture. However, labeling low-attention periods based on learners’ memory 
recall easily generates errors due to the limits of human memory, thus affecting the matching 
degree between the low-attention periods labeled by the learners and predicted by the proposed 
AAS. 

Table 2. Comparison of the low-attention periods of video lecture labeled by the learners and 
predicted by the proposed AAS 

Learner Precision Rate (%) Recall Rate (%) F-measure 
1 56.09% 94.78% 0.7047 
2 40.00% 62.20% 0.4869 
3 61.36% 80.68% 0.6971 

4 35.84% 61.32% 0.4524 

Average 48.32% 74.75% 0.5853 

4.3 Assessing the prediction accuracy of the proposed AAS for identifying 
low-attention periods caused by the video lecture with manually adding 
disturbances 

Four graduate students who are the same with the research participants in the experiment 1 
were invited to view a 10-minute video lecture on electrical safety in the workplace, in which 
seven disturbances were manually added. The study also assessed whether the proposed AAS 
can successfully identify the low-attention periods of the video lecture caused by manually 
adding disturbances. Table 3 summarizes those results. According to those results, the average 
precision rate, recall rate and F-measure are 41.84%, 62.27%, and 0.4780, respectively. The 
highest precision rate, recall rate and F-measure are 46.25%, 77.55%, and 0.5441, respectively. 
The average number of un-recognition units is lower than 2. Above results demonstrate that the 
proposed AAS can effectively identify the low-attention periods of video lecture, owing to the 
manually adding of disturbances to some degree. However, the evaluation results are based on 
the hypothesis that the periods of video lecture with manually adding disturbances will lead to 
learners’ low-attention levels. Although this hypothesis is logical, some exceptions might happen 
in some research participants. 

Table 3. The prediction results of the proposed AAS on identifying low-attention periods of 
video lecture causing by manually adding disturbances 

Learner Precision Rate (%) Recall Rate (%) F-measure 
Number of 

Un-recognition
1 43.86% 51.02% 0.4717 2 
2 35.40% 77.55% 0.4861 1 
3 46.25% 66.07% 0.5441 1 
4 32.90% 54.42% 0.4103 3 

Average 39.60% 62.27% 0.4780 1.75 
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4.4 Learners’ survey for assessing the prediction accuracy of the proposed 
AAS on low-attention periods of a video lecture 

Four graduate students who are the same with the research participants in the experiment 1 
were invited to view a 10-mimute video lecture on electrical safety in the workplace. Following 
completion of the learning activity, all learners were requested to fill in a questionnaire with a 
5-point Likert scale, ranging from 1 for “strongly disagree” to 5 for “strongly agree”, to examine 
the consistency of the low-attention periods of video lecture predicted by the proposed AAS and 
recognized by the learners. Table 4 summarizes those results. This table reveals that all survey 
scores are less than 4 points. The highest score is 3.36 points, and the lowest score is 2.09. The 
average survey score is 2.83 points, which is close to neutral, indicating that the learners agreed 
with the prediction results of low-attention periods by the proposed AAS to some degree. 
Similarly, assessing the consistency of the low-attention periods of video lecture predicted by the 
proposed AAS and recognized by the learners based on learners’ memory recall also easily 
generates errors due to the limits of human memory, thus affecting the average survey score of 
the questionnaire. 

Table 4. Survey scores of participants for the low-attention periods predicted by the proposed 
AAS 

Learner 
Number of low-attention periods 
identified by the proposed AAS 

Survey score of participants 

1 22 3.36 
2 36 3.00 
3 23 2.86 
4 32 2.09 

Average 28 2.83 

4.5 Correlation between the identified low-attention periods with the posttest 
score and the progressive score 

Eight graduate students who include the same four research participants in the experiments 1 
and four adding research participants were invited to view a 16-minute video on electrical safety 
in the workplace. In addition to viewing the video lecture, all participants were instructed to 
review the low-attention periods of the video lecture identified by the proposed AAS after 
finishing the learning activity. A posttest was performed assess the participants’ learning 
performance. Table 5 summarizes the descriptive statistics results of the low-attention periods of 
video lecture identified by the proposed AAS, pretest, posttest, and progressive score. According 
to those results, seven participants have progressive scores except for one participant. Moreover, 
by further using the Pearson product-moment correlation, this study assessed whether a 
correlation exists between the low-attention periods of video lecture identified by the proposed 
AAS and the posttest score and whether a correlation exists between the low-attention periods of 
video lecture identified by the proposed AAS and the progressive score. Table 6 summarizes 
those results. Analytical results indicate that the low-attention periods of video lecture identified 
by the proposed AAS and the posttest scores reach a statistically strong negative correlation (r = 
- .806, p = .016 < .05) as well as the low-attention periods of video lecture identified by the 
proposed AAS and the progressive scores also reach a statistically strong negative correlation (r 
= - .768, p = .026 < .05). This finding implies that the identified low-attention periods of video 
lecture increase, then the posttest scores and progressive scores of the learners decrease as well. 
Above results demonstrate that the proposed AAS can accurately identify the low-attention 
periods of video lecture that the learners generated when they engaged in a learning activity with 
a video lecture. 
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Table 5. The descriptive statistics results of the low-attention periods of video lecture identified 
by the proposed AAS, pretest, posttest, and progressive score 

Learner 
Low-attention periods 

identified by the proposed 
AAS (sec) 

Pretest 
score 

Posttest 
score 

Progressive
score 

1 87 82.5 90 7.5 
2 10 83 97 14 
3 34 91.5 95.5 4 
4 70 80.5 86.5 6 
5 51 81 90 9 
6 81 87.5 89.5 2 
7 110 92.5 88.5 -4 
8 68 87 88.5 1.5 

Table 6. Correlation among the low-attention periods of video lecture identified by the proposed 
AAS, the posttest score, and the progressive score 

Item 
The low-attention periods of video lecture 

identified by the proposed AAS 
Two-tailed Test of Significance 

Pretest score .269 .519 
Posttest score -.806* .016 

Progressive score -.768* .026 

*p < .05 
 

Moreover, regression analysis was performed of the learning performance and the 
low-attention periods of a video lecture. Table 7 summarizes those results. This table reveals that 
the low-attention periods of video lecture identified by the proposed AAS can accurately forecast 
the posttest scores (R2 = .649), and can explain a variance of the posttest scores of up to 64.9%. 
Meanwhile, the low-attention periods of video lecture can accurately forecast the progressive 
score (R2 = .590), and can explain the progressive score variance of up to 59%. 

Table 7. The regression analysis results between the learning performance and the low-attention 
periods of video lecture identified by the proposed AAS 

Model summary ANOVA Unstandardized coefficients 
Selected variable R R2 F Sig. β distribution t Sig.

Using the low-attention periods of video 
lecture identified by the proposed AAS to 

forecast the posttest score 
.806 .649 11.096 .016 -.093 -3.331 .016

Using the low-attention periods of video 
lecture identified by the proposed AAS to 

forecast the progressive score 
.768 .590 8.62 .026 -.132 -2.936 .026

5. Discussion 

EEG recordings can be broadly divided in invasive EEG and non-invasive EEG recordings 
(Ball, Kern, Mutschler, Aertsen, & Schulze-Bonhage, 2009; Zumsteg & Wieser, 2000). Invasive 
EEG recordings are those recordings that are made with electrodes that have been surgically 
implanted on the surface or within the depth of the brain, whereas non-invasive EEG recordings 
are those recordings that obtain from electrodes attached to the scalp surface (Ball, Kern, 
Mutschler, Aertsen, & Schulze-Bonhage, 2009). To date there is no single non-invasive EEG test 
that provides definitive information on which surgery can be based despite continuous 
improvement and development of promising new noninvasive techniques (Zumsteg & Wieser, 
2000). Invasive EEG recordings are frequently used for diagnostics in patients suffering from 
brain diseases with two or more lesions and an unknown seizure origin where pharmacological 
treatment is insufficient and the possibility of neurosurgical treatment is evaluated (Nair, 
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Burgess, McIntyre, & Luders, 2008). That is, invasive EEG techniques might be indispensable 
because they still play an essential role in patients undergoing presurgical evaluation (Zumsteg 
& Wieser, 2000). Although invasive EEG recordings facilitate the observation of all EEG signal 
changes, its practical implementation is extremely inconvenient (Liu, Chiang, & Chu, 2013). 
Therefore, this study gathers EEG signals by using a non-invasive EEG sensor with 
single-channel dry. Compared with invasive EEG recordings gathered by 10-20 electrodes, using 
a non-invasive EEG sensor with single-channel for sensing EEG signals lowers the accuracy of 
EEG signals, but this scheme is characterized by its ease of wear and its high potential in 
practical applications. 

The EEG signal is frequently used to recognize human attention levels based on the selected 
features of α, β, γ, θ and δ waves. According to those results of applying GA for feature selection, 
the seven most relevant features associated with human attention levels are γ-approximate 
entropy, γ-total variation, β-approximate entropy, β-total variation, β-skewness, α-total variation, 
and θ-energy. Restated, the highest prediction accuracy of attention level is achieved when 
considering the above seven features. As expected, no any brainwave’s features associated with 
δ activity are included in the seven most relevant features on the recognition problem of attention 
level. The δ activity should normally not appear when an individual is awake. Importantly, 
analytical results indicate that two features of the γ activity (including γ- approximate entropy 
and γ- total variation) are strongly correlated with human attention levels. The results are 
consistent with several studies (Kaiser & Lutzenberger, 2003; Herrmann & Mecklinger, 2001; 
Lee, Williams, Breakspear & Gordon, 2003), indicating that γ activity is related to selective 
attention. Moreover, three features of the β activity (including β-approximate entropy, β-total 
variation, and β-skewness) are also strongly correlated with human attention levels. This 
correlation is reasonable because β activity is associated with normal waking consciousness, 
stimulation, and alert. These results are consistent with those of Egner and Gruzelier (2004), 
indicating that the variation in the β wave in the EEG is strongly correlated with attention. Our 
results further demonstrated that the θ-energy of the θ activity is correlated with human attention 
levels. Recent research has suggested that θ oscillations are generated in frontal brain regions 
and play a major role in memory maintenance (Lee, Williams, Breakspear, & Gordon, 2003). 
Additionally, α-total variation of the α activity is selected in this study as one of the seven most 
relevant features with human attention levels. The α activity normally indicates that the brain is 
in a state of relaxation. Exploring why the θ-energy and α-total variation are correlated with 
human attention levels is a worthwhile task. 

Moreover, based on a support vector machine (SVM) that produces excellent two-class 
results as the classifier, Liu, Chiang and Chu (2013) attempted to identify whether students are 
attentive or inattentive during instruction based on human EEG signals. In their study, five 
features extracted from EEG signals were considered as the key features associated with human 
attention levels for identifying students’ attention states. However, their study did not implement 
a feature selection scheme. Nevertheless, their study demonstrated that the prediction accuracy 
of the proposed method reaches 76.82%. Moreover, while conducting EEG examinations using 
brain power-related tasks, Li et al. (2011) instructed the subjects to report their attention levels. 
Based on kNN classifier, their study designed a system for measuring human’s attention levels 
immediately. The prediction accuracy of the proposed system was 57.3%. Fortunately, based on 
GA-LIBSVM, this study develops the AAS and performs a feature selection for identifying most 
relevant EEG features associated with human attention levels. According to our results, the 
overall prediction accuracy of the proposed AAS on the high- and low-attention levels reaches as 
high as 89.52%. Obviously, the proposed AAS in this study achieves the highest prediction 
accuracy of identifying human attention levels. 

Despite its contributions, this study has certain limitations. First, while this study develops 
an AAS as a flexible means of assessing students’ attention levels, MindWave headsets 
developed by NeuroSky are used, which is a non-invasive EEG sensor with single-channel dry, 
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to collect EEG signals associated with students’ attention levels. Students merely need to wear 
MindWave headsets on their foreheads while gathering EEG signals. The limitations of a 
single-channel dry sensor may lower the accuracy of collecting EEG signals associated with 
students’ attention levels. However, according to a study undertaken by Johnstone, Blackman 
and Bruggemann (2012), the EEG signal collected by the MindWave headsets resembles that of 
the Biopac system, wet-electrode equipment widely used in medical and research applications. 
Moreover, detecting the EEG signals generated in this area of the brain is a highly effective 
method since the cerebral cortex in the forehead controls human emotions, mental states, and 
levels of attentiveness (Liu, Chiang, & Chu, 2013). Second, since gathering a large number of 
EEG signals with low- and high-attention levels as training and testing data for constructing the 
proposed AAS is rather time consuming, this study only invited ten volunteers to gather their 
attention responses and their corresponding EEG signals on the CPT to construct the AAS. The 
small sample size may limit efforts to identify representative EEG signals for constructing the 
AAS. Finally, this study designed four experiments with small sample size to confirm the 
prediction performance of the proposed AAS on identifying learners’ attention levels due to the 
difficulty of recruiting research participants. This may affect the results of assessing the 
prediction performance of the proposed AAS in terms of identifying learners’ attention levels. 

6. Conclusions and Future Work 

By using GA-LIBSVM with optimal model selection and feature selection, this study tries to 
develop a novel AAS based on human EEG signals to identify high- and low-attention levels of 
students in an autonomous e-learning environment. Analytical results indicate that the prediction 
accuracy rates of the proposed AAS on high- and low-attention levels are 91.60% and 87.44%, 
respectively. The overall prediction accuracy of the proposed AAS reaches as high as 89.52%. 
Moreover, according to our results, the key features associated with attention level are 
γ-approximate entropy, γ-total variation, β-approximate entropy, β-total variation, β-skewness, 
α-total variation, and θ-energy. Additionally, most of the seven features correlate well with the 
theoretical results. Moreover, the proposed AAS is integrated with a video lecture tagging 
system to further evaluate the prediction accuracy of the proposed AAS in terms of identifying 
low-attention periods of learners while engaging in a learning activity by watching a video 
lecture. According to our results, the proposed AAS can accurately identify the low-attention 
periods of video lecture that learners generated to some degree based on the performance 
measures of precision rate, recall rate, and F-measure. Furthermore, the proposed AAS is robust 
in terms of identifying low-attention periods of video lecture with disturbances. A questionnaire 
survey with a 5-point Likert scale also confirms that most of the learners agreed with the 
prediction results of low-attention periods of video lecture identified by the proposed AAS to 
some degree. Also, statistically significant negative correlations and predictability exist between 
the low-attention periods of video lecture identified by the proposed AAS and posttest scores and 
between the low-attention periods of video lecture identified by the proposed AAS and 
progressive scores. Results of this study demonstrate that the proposed AAS can accurately 
identify the low-attention periods of video lecture that the learners generate while performing a 
learning activity with video lecture. 

Several issues warrant further investigation. First, reviewing the periods of video lecture 
with a low attention level identified by the proposed AAS is a highly promising means of 
supporting remedial learning in an autonomous learning environment. Therefore, we recommend 
that future research designs an instruction experiment to confirm whether reviewing the periods 
of a video lecture with a low attention level improves remedial learning performance. Second, by 
using GA-LIBSVM, this study develops a novel AAS that can identify human attention states as 
a low or high attention level based on EEG signals. Future work should consider developing an 
AAS that can identify human attention states as continuous values based on machine learning 
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models with a forecasting capability of contiguous states, such as support vector regression 
(Smola & Lkopf, 2004) or neural networks. Third, the physiological signal adopted in this study 
for constructing the proposed AAS is the EEG signal. However, future research should consider 
whether combining the EEG signal with human behavior, such as eye gaze tracking (Toet, 2006), 
to construct the proposed AAS can achieve a higher prediction accuracy than the current method. 
Additionally, future research should extend the participant pool to a larger sample size and 
different age groups for the four deigned experiments to confirm the prediction performance of 
the proposed AAS in terms of identifying learners’ attention levels. 
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