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Abstract 1 

Background and Objectives: A computer-aided diagnosis (CAD) system based on 2 

quantitative magnetic resonance imaging (MRI) features was developed to evaluate the 3 

malignancy of diffuse gliomas, which are central nervous system tumors. 4 

Methods: The acquired image database for the CAD performance evaluation was 5 

composed of 34 glioblastomas and 73 diffuse lower-grade gliomas. In each case, tissues 6 

enclosed in a delineated tumor area were analyzed according to their gray-scale 7 

intensities on MRI scans. Four histogram moment features describing the global gray-8 

scale distributions of gliomas tissues and 14 textural features were used to interpret local 9 

correlations between adjacent pixel values. With a logistic regression model, the 10 

individual feature set and a combination of both feature sets were used to establish the 11 

malignancy prediction model. 12 

Results: Performances of the CAD system using global, local, and the combination of 13 

both image feature sets achieved accuracies of 76%, 83%, and 88%, respectively. 14 

Compared to global features, the combined features had significantly better accuracy 15 

(p=0.0213). With respect to the pathology results, the CAD classification obtained 16 

substantial agreement κ=0.698, p<0.001. 17 

Conclusions: Numerous proposed image features were significant in distinguishing 18 

glioblastomas from lower-grade gliomas. Combining them further into a malignancy 19 

prediction model would be promising in providing diagnostic suggestions for clinical use. 20 
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Introduction 1 

Gliomas are central nervous system (CNS) tumors formed of neoplastic cells that 2 

display glial cell differentiation. According to the World Health Organization (WHO) 3 

classification of tumors of the CNS, diffuse gliomas can be subdivided by the degree of 4 

malignancy into WHO grade II (lower grade) to grade IV (high malignancy) [1, 2]. 5 

Glioblastomas (GBMs), WHO grade IV tumors, are the most aggressive tumor type with 6 

a dismal prognosis despite advances in therapeutic management [3]. In contrast to GBMs, 7 

diffuse lower-grade gliomas (LGGs, grades II and III) have more-favorable outcomes  8 

and shared many similar histopathologic and genomic signatures [2, 4]. Since the 9 

therapeutic approach of them are also different [5], distinguishing GBM from LGG is a 10 

very critical clinical issue. Determining the tumor grade depends on several pathological 11 

features including cytological atypia, mitotic activity, angiogenesis, and necrosis. 12 

However, there are still some pitfalls in the histopathological analysis which can lead to 13 

ambiguity in glioma grading. For example, interpretation of some criteria can vary 14 

because their definitions are semiquantitative or imprecise [6, 7]. Moreover, the 15 

heterogeneous expressions of aggressive cellular features make unguided surgical 16 

biopsies prone to sampling error, resulting in misgrading in up to 30% of cases [7-11]. 17 

With the development of diagnostic imaging technologies, the accuracy of 18 

estimating the malignancy of brain tumors has greatly increased by applying magnetic 19 

resonance (MR) imaging (MRI) features [12, 13]. MRI is commonly used because it 20 

provides a wide range of physiologically meaningful contrasts to distinguish different 21 

tissues by imaging, and therefore improves evaluations of heterogeneous patterns of 22 

tissue compositions within diffuse gliomas [14]. In addition to conventional sequences, 23 
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several MRI techniques including diffusion-weighted imaging (DWI), MR spectroscopy 1 

(MRS), and perfusion-weighted imaging (PWI), are also applied to non-invasively 2 

differentiate LGGs from GBMs [15-18]. A previous study supported MRI scans being 3 

highly specific for diagnosing brain stem gliomas and can replace biopsies before 4 

radiotherapy in most patients [19]. To avoid unnecessary operations, the role of MRI in 5 

the diagnostic imaging of brain tumors is especially crucial. 6 

Computer-aided diagnosis (CAD) systems based on quantitative image features and 7 

artificial intelligence classifiers were developed to assist radiologists in determining 8 

tumor types and grades [20-22]. With machine learning schemes, textural features 9 

extracted from MRI scans are used to classify different tissue types which can assist 10 

clinical decision-making regarding initial and evolving treatment strategies [23]. CAD 11 

systems can quantitatively combine numerous imaging features to estimate the likelihood 12 

of tumor malignancy by percentages. Efficient and consistent procedures can provide 13 

reliable suggestions to radiologists to avoid invasive procedures for which risks outweigh 14 

benefits. 15 

In this study, local and global imaging features extracted from the entire tumor area 16 

on MRI scans were quantified to reveal levels of heterogeneity. Quantified image 17 

features were combined in a logistic regression classifier to generate a prediction model 18 

for each case. The performances of an individual image feature set and the combination 19 

of both local and global features were evaluated in the experiment. As a second viewer, 20 

the CAD can provide suggestions of tumor grading to the radiologists on clinical 21 

examinations. 22 

 23 
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Materials and Methods 1 

Patient information 2 

The Cancer Genome Atlas (TCGA) and the Cancer Imaging Archive (TCIA) 3 

MRI datasets for 34 GBM and 73 LGG patients were obtained from TCIA 4 

(http://cancerimagingarchive.net/) of the National Cancer Institute, a portal containing 5 

images of TCGA patients for image analysis. The collection of original materials and 6 

data provided by TCGA project was conducted in compliance with all applicable laws, 7 

regulations, and policies for the protection of human subjects. All necessary approvals, 8 

authorizations, human subject assurances, informed consent documents, and IRB 9 

approvals were obtained  [24]. The images used in this research were generated from 10 

three institutes: Henry Ford Hospital, Thomas Jefferson University, and Case Western 11 

hospitals as shown in Table 1. All images used in this research were created before 12 

any operative procedure including surgical biopsy. 13 

There were totally 34 GBMs (grade 4) 14 

(http://dx.doi.org/10.7937/K9/TCIA.2016.RNYFUYE9) and 73 LGGs (grades 2 and 3) 15 

(http://dx.doi.org/10.7937/K9/TCIA.2016.L4LTD3TK) included in this study. In the 16 

LGG group, there were 33 oligodendrogliomas, 16 oligoastrocytomas, and 24 17 

astrocytomas. Nineteen oligodendrogliomas were classified into grade 2, and 14 cases 18 

were classified into grade 3. Seven cases of oligoastrocytoma were classified into grade 2, 19 

and nine cases were classified into grade 3. Among astrocytomas, four cases were 20 

classified into grade 2, and 20 cases were classified into grade 3. Therefore, we had totals 21 

of 30 grade 2 and 43 grade 3 gliomas in the LGG group. 22 

 23 

http://cancerimagingarchive.net/
http://dx.doi.org/10.7937/K9/TCIA.2016.RNYFUYE9
http://dx.doi.org/10.7937/K9/TCIA.2016.L4LTD3TK


 6 

Image analysis 1 

The MRI sequence used for the analysis was the contrast-enhanced axial T1-2 

weighted image (T1WI). Imaging features were quantitatively analyzed by procedures 3 

described herein. A board-certified neuroradiologist (K.H., with 12 years of experience) 4 

who was blinded to the clinical information selected the most representative 2D image of 5 

each tumor. Intensity normalization which extended the gray-level distribution of each 6 

MRI image to the whole value range (0-255) was performed to enhance the contrast 7 

between tumor and background tissues for contour delineation. Regions-of-interests 8 

(ROIs) were then outlined manually using OsiriX in the selected contrast-enhanced T1WI. 9 

Pixels encircled in the ROI were used for feature analysis. 10 

 11 

Image features 12 

Global statistics 13 

Observing the gray-scale distribution of the tumor region, the composition of 14 

pixel values in the region can be presented by a probability distribution. The regional 15 

distribution formed a histogram which contained global statistics of the tissue properties 16 

which can be characterized by the histogram moments [25, 26]. Quantification of the 17 

moments provided objective measures of the shape which were used to express the 18 

difference between LGGs and GBMs in the experiment. The first-, second-, third-, and 19 

fourth-order central moments of the gray-scale histograms were calculated as the global 20 

statistical features, i.e., the mean, variance, skewness, and kurtosis. 21 

     (1) 22 

   (2) 23 
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    (4) 2 

Pi is the gray-scale pixel value. The mean is the center of a distribution obtained by 3 

summarizing all pixel values and dividing this by the number of pixels in a tumor region. 4 

Variance measures how far the gray-scale values are spread out. Skewness estimates the 5 

symmetry of a distribution such as a bias to the left or right side. Compared to a normal 6 

distribution, kurtosis is a single-peaked shape with heavily weighted tails. 7 

 8 

Local statistics 9 

Detailed correlations between adjacent image pixels were the local statistics of 10 

tumor characteristics. For pattern recognition, local statistics were used to describe 11 

textures to identify different objects. Because the compositions of MRI scans are 12 

intensities with gray-level values, the gray-level co-occurrence matrix (GLCM) [27] 13 

which presents the local statistics can be calculated and are features distinguishing LGGs 14 

and GBMs. An original image was first quantified into an image, G, with intensity bins. 15 

From G, co-occurrence matrices P=[p(i,j|d,θ)] were generated to express the frequencies 16 

of each pixel (gray value i) and its neighboring pixels (gray value j) at distance d and 17 

direction θ. As shown in Fig. 3, d=1 and θ=0°, 45°, 90°, and 135° were used in the 18 

experiment for the defined local area. From the matrices, the GLCM features were 19 

extracted:  20 

Autocorrelation= 
 

(5) 



 8 

Contrast= 

 

(6) 

Correlation = 
 

(7) 
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Inverse difference normalized= 

 

(17) 

Inverse difference moment = 

 

(18) 

where μx, μy, σx and σy are the mean and standard deviation (SD) of the marginal 1 

distributions of p(i,j|d,θ).  2 

 

 

(19) 
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Statistical analysis 4 

The image features proposed above, including global and local statistics, were 5 

evaluated as to whether they could distinguish between LGG and GBM tumors. The 6 

feature value distributions were first evaluated by the Kolmogorov-Smirnov test [28] to 7 

determine their normalities. Normal image features were subjected to Student’s t-test [28], 8 

and non-normal image features were evaluated by the Mann-Whitney U-test [28]. 9 

Resulting p values of <0.05 indicated that features were statistically significant in 10 

distinguishing between LGG and GBM tumors. 11 

Another evaluation method was the prediction performance of these image features. 12 

Using a binary logistic regression as the classifier, global and local image features were 13 

combined into respective feature sets. First, the performance of an individual feature set 14 
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was generated. Then, the two feature sets were combined to see the complementary 1 

power. When establishing a prediction model, biopsy-proven pathology results were 2 

acquired as the gold standard in the classifier. Step-wise backward elimination removed 3 

redundant features based on their abilities, and the most relevant features with the 4 

smallest error rates were selected. Leave-one-out cross-validation [28] was used to 5 

evaluate the generalizability of the selected features. In the iteration loop, one case was 6 

separated from the total n cases and was used to test the trained model from the 7 

remaining n-1 cases. 8 

According to the pathology results, the performance of the prediction model can be 9 

presented using five general performance indices: accuracy, sensitivity, specificity, 10 

positive predictive value (PPV), and negative predictive value (NPV). In the 11 

determination of an LGG or GBM, cases with a predicted probability of >0.5 were 12 

regarded as GBMs to obtain the best tradeoff between the sensitivity and specificity. 13 

Different points of tradeoff combinations were also calculated and illustrated using a 14 

receiver operating characteristic (ROC) curve. To provide an overall performance 15 

evaluation, the area under the ROC curve, Az, was formulated using ROCKIT software 16 

(C. Metz, University of Chicago, Chicago, IL, USA). 17 

The agreement between the prediction model of the CAD system and the pathology 18 

results was obtained by Cohen’s kappa statistic (κ) [28]. Generally, the agreement was 19 

slight if the κ value was <0.20; fair if κ was in the range of 0.21~0.40; moderate if κ was 20 

in the range of 0.41~0.60; substantial if κ was in the range 0.61~0.80; and almost perfect, 21 

if κ was in the range of 0.81~1.00. The test and correlation analyses were carried out 22 

using SPSS software (vers. 16 for Windows; SPSS, Chicago, IL, USA). 23 
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 1 

Results 2 

According to distributions of feature values, the proposed global and local image 3 

features were tested by either Student’s t-test (for those with a normal distribution) or the 4 

Mann-Whitney U-test (for those with a non-normal distribution). Tables 2 and 3 show the 5 

statistical data and p values, respectively, of significant features in distinguishing LGG 6 

from GBM tumors. Three of four global image features achieved p values of <0.001, and 7 

nine local image features had p values of <0.05. 8 

Taking the pathology results as the standard for tumor grading, performances of the 9 

global image feature sets achieved an accuracy of 76%, a sensitivity of 68%, a specificity 10 

of 79%, and an Az of 0.78, while local image feature sets achieved an accuracy of 83%, a 11 

sensitivity of 79%, a specificity of 85%, and an Az of 0.89 (Table 4). Overall, the local 12 

image feature set performed better than the global image feature set. However, 13 

differences in performances were not significant. Combining both global and local image 14 

features together for the tumor classification achieved even better performance: an 15 

accuracy of 88%, a sensitivity of 82%, a specificity of 90%, and an Az of 0.89. 16 

Compared to the global image features set, the combined features achieved significantly 17 

better accuracy (p=0.0213) and Az (p=0.0197) (Table 5). 18 

 Trade-offs between sensitivity and specificity are illustrated as ROC curves in Fig. 19 

4 to show the performances with different cutoff points. Compared to the pathology 20 

results, the classification results of the proposed CAD system obtained substantial 21 

agreement κ=0.698, p<0.001. Figure 5 shows a successfully classified GBM tumor by the 22 
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combined image features, but it was misclassified by both the global and local image 1 

feature sets. 2 

 3 

Discussion 4 

Brain MRI provides an advanced diagnostic imaging technology to interpret tumor 5 

characteristics for evaluating tumor type and grade. Based on the gray-scale distribution 6 

of tissues in the tumor area, CAD systems can perform malignancy estimations using 7 

numerous quantitative image features to provide more-objective and -reliable suggestions. 8 

In this study, global image features as statistics of the image moment describing the 9 

histogram shape were quantified to express the overall brightness distribution in the 10 

tumor area. Local image features were textural patterns describing correlations among 11 

neighboring pixels. Benefiting from the complementary power, the combination of both 12 

global and local image features achieved an accuracy of 88%, a sensitivity of 82%, a 13 

specificity of 90%, and an Az of 0.89. Originally, local image features performed better 14 

than global image features without significance. Nevertheless, the combined features 15 

achieved significantly better accuracy (p=0.0213) and Az (p=0.0197) than the global 16 

image features set. This shows that global image features interpret some characteristics 17 

which local features cannot reveal. Previous studies [29-31] which only used GLCM 18 

features as local image features for tumor classification might have been insufficient. 19 

Also, too many features may induce additional computational complexity. Whether the 20 

image features truly interpret the underlying tissue characteristics should reasonably be 21 

discussed. For this study, some misclassified cases seemed to have irregular enhancement 22 

rings surrounding central necrosis according to the image features used in the CAD 23 
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system and the conventional diagnosis criteria in clinical use. The dimension of this kind 1 

of characteristic is regional rather than pixel-wise. More regional features should be 2 

developed via the separation of the enhancement regions and the other regions in tumors 3 

for the performance improvement. Besides, although many of the proposed features were 4 

formulated using relative intensity distributions such as Variance in global features and 5 

Contrast in local features, more intensity-invariant image features can be developed to 6 

reduce the effect of intensity variation in the next study. For the acquired database, 7 

different patients have different settings for the same MR sequence, even they were 8 

all scanned in the same MR machine. Since there is wide-variation of the 9 

parameters used in both groups, we don’t think this is the cause of our statistically 10 

valid differences of computed features between LGG and GBM. Completely 11 

quantifying characteristics in tumor area is also important. In this experiment, proposed 12 

image features were extracted from the entire tumor area, which should provide more-13 

reliable tissue characteristics and possibly be reproducible in clinical use compared to 14 

some studies [23, 32] using one or more squares or circles as the ROI to define tumor 15 

tissues. 16 

With respect to the classifier, artificial neural networks (ANN) was also used for 17 

comparison. Generally, using one kind of classifier to be the technique of choice in all 18 

circumstances is unlikely. ANN is particularly useful if complex nonlinearities existed in 19 

a data set. On the other hand, logistic regression provides a clear choice to understand the 20 

relationships between the diagnostic result and the predictor variables. Based on logistic 21 

regression, tumor malignancy can be divided by using different weights on different 22 

characteristics to express the individual importance. The diagnostic result based on ANN 23 
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with back-propagation achieved an accuracy of 84%, a sensitivity of 79%, and a 1 

specificity of 86% which is slightly lower than that of logistic regression (accuracy: 88%, 2 

sensitivity: 82%, and specificity: 90%) as shown in Table 6. According to the result and 3 

purpose, logistic regression is considered to be appropriate to provide accurate and 4 

meaningful malignancy estimation in brain tumor classification. 5 

In this study, only contrast-enhanced T1WIs were used instead of complete MR 6 

sequences to estimate the tumor grading. The obvious shortcoming of this design is that 7 

peri-tumoral edema might not be well depicted on T1WIs. However, key determinants for 8 

differentiating grades II and III from grade IV gliomas are necrosis and/or angiogenesis. 9 

Necrosis is an area of a non-enhanced region within the neoplasm with a signal similar to 10 

that of cerebrospinal fluid, which can always be clearly demonstrated in contrast-11 

enhanced T1WIs [13]. Also, the degree of contrast enhancement was found to be 12 

associated with the activity of the angiogenesis module within the tumor [33, 34]. Since 13 

both necrosis and angiogenesis are important criteria applied in histopathology to 14 

differentiate GBM from LGG; therefore, we believe that measurements of signal 15 

intensities on CET1WI can be key determinants to differentiate GBM from LGG. 16 

Nevertheless, further investigation of the role of other important sequences like fluid-17 

attenuated inversion recovery (FLAIR), PWI, DWI, and MRS is warranted.  18 

One limitation of this study is that only two-dimensional tumor areas were 19 

delineated for feature extraction and subsequent classification. Using the three-20 

dimensional volume for malignancy evaluation would be more convincing. However, 21 

contour delineation would be a time-consuming task. Automatic tumor segmentation is a 22 

better way to save time. With respect to the anatomical structures in the brain, normal 23 
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tissues with various gray-scale intensities surrounding the tumors can barely be separated. 1 

A more-sophisticated method would be helpful such as a learning model with prior 2 

knowledge about the anatomical structures in the brain. Second, the LGG group 3 

contained both grade 2 and 3 gliomas with three different histological cell types. It is 4 

possible that tumors belonging to each subset may have different MR imaging signatures. 5 

Further researches about distinguishing the grades and types of glioma are warranted. 6 

Currently, the proposed CAD system could rapidly provide suggestions about glioma 7 

malignancy to radiologists based on preoperative clinical examinations. 8 

Using CAD with the quantitative approach, the diagnostic procedure can be speeded 9 

up with reduced diagnostic errors. The consistent estimation can also provide reliable 10 

suggestions to radiologists to avoid invasive procedures for which risks outweigh benefits. 11 

Whether CAD can improve radiologists’ performances is absolutely the most meaningful 12 

utility on clinical examinations. The next experiment would be an observers’ study. 13 

 14 

Conclusions 15 

Twelve proposed MR image features were significant in distinguishing 16 

glioblastomas from diffuse lower-grade gliomas (p<0.05). Combining them further into a 17 

malignancy prediction model was very promising (accuracy: 88%, κ=0.698, p<0.001) in 18 

providing diagnostic suggestions for clinical use. 19 
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Figure Captions 1 

Fig. 1. Examples selected from the acquired database showing the challenge of 2 

distinguishing between lower-grade gliomas (a, b) and glioblastomas (c, d). 3 

Fig. 2. Examples of delineated tumor areas and corresponding gray-scale distributions of 4 

histograms shown in Fig. 1. 5 

Fig. 3 Co-occurrence matrices established with distance=1 and directions=0°, 45°, 90°, 6 

and 135° for each pixel and its neighboring pixels. 7 

Fig. 4. Trade-offs between the sensitivity and specificity of tumor classification 8 

illustrated by receiver operating characteristic (ROC) curves. 9 

Fig. 5. A malignant glioblastoma (GBM) tumor which was misclassified by both the 10 

global (malignancy likelihood=33%) and local image features (malignancy 11 

likelihood=22%) but correctly classified by the combined image features 12 

(malignancy likelihood=58%). (a) Original MRI image and (b) the delineated tumor 13 

area. 14 

15 
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Table 1. Common parameters of contrast enhanced T1WI in three institutions*. 1 

 

Henry Ford Hospital 

Thomas Jefferson 

University 

Case Western 

MR Machine 

GE  

Signa HDxt 

Siemens  

Magnetom Vision 

Siemens  

Avanto 

Magnetic field 

strength 

1.5T 1.5T 1.5T 

TE (ms) 13 3.5 2.81 

TR (ms) 500 7.6 2160 

Slice thickness 

(mm) 

2.5 1.5 1 

Flip angle 90 15 15 

FOV(mm)  240 280 250 

Matrix 256X192 512X256 256X256 

Contrast 

medium 

Gadolinium-based 

contrast medium 

Gadolinium-based 

contrast medium 

Gadolinium-based 

contrast medium 

* The detailed parameters of each image varied from case to case. Here lists the common 2 

imaging parameters of the representative cases from three institutions. 3 

4 
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Table 2. Significant global image features and corresponding p values evaluated using 1 

Student’s t-test (for those with a normal distribution, mean values) or the Mann-2 

Whitney U-test (for those with a non-normal distribution, median values) 3 

Feature  Lower-grade gliomas Glioblastomas  p value 

 Mean±SD Median Mean±SD Median 

Mean 85.58±44.3

2 

 125.23± 28.63  <0.001* 

Variance  256.32  1412.15 <0.001* 

Kurtosis  3.85  2.76 <0.001* 

* A p value of <0.05 indicates a statistically significant difference. 4 

 5 

6 
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Table 3. Significant local image features and corresponding p values evaluated using 1 

Student’s t-test (for those with a normal distribution, mean values) or the Mann-2 

Whitney U-test (for those with a non-normal distribution, median values) 3 

Feature Lower-grade gliomas Glioblastomas p value 

Mean±SD Median Mean±SD Median 

Contrast  0.02  0.04 <0.001* 

Correlation  0.95  0.92 <0.001* 

Dissimilarity 0.021±0.00

7 

 0.026±0.00

8 

 <0.01* 

Homogeneity 1.00±0.01  0.99±0.01  <0.05* 

Difference 

variance 

 0.02  0.04 <0.001* 

Difference entropy 0.04±0.02  0.06±0.02  <0.05* 

Information 

measure of 

correlation 

-0.81±0.05  -0.76±0.02  <0.001* 

Inverse difference 

normalized 

0.9989±0.0

008 

 0.9985±0.0

008 

 <0.01* 

Inverse difference 

moment normalized 

0.9996±0.0

003 

 0.9994±0.0

003 

 <0.001* 

* A p value of <0.05 indicates a statistically significant difference. 4 

PPV, positive predictive value; NPV, negative predictive value; Az, area under the curve. 5 

 6 

7 
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Table 4. Performances of different image feature sets for the classification of lower-grade 1 

gliomas (LGGs) and glioblastomas (GBMs) 2 

 Accuracy Sensitivity Specificity PPV NPV Az 

Global image 

features 

76% (81/107) 68% (23/34) 79% (58/73) 61% (23/38) 84% (58/69) 0.78 

Local image 

features 

83% (89/107) 79% (27/34) 85% (62/73) 71% (27/38) 90% (62/69) 0.89 

Combined 

features 

88% (94/107) 82% (28/34) 90% (66/73) 80% (28/35) 92% (66/72) 0.89 

 3 

4 
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Table 5. Statistical test results of performance differences between different image 1 

feature sets for the classification of lower-grade gliomas (LGGs) and glioblastomas 2 

(GBMs) 3 

p value Accuracy Sensitivity Specificity PPV NPV Az 

Local vs. 

Global 

0.1760 0.2716 0.3869 0.3335 0.3120 0.0540 

Combined vs. 

Global 

0.0213* 0.1614 0.0642 0.0701 0.1654 0.0197* 

Combined vs. 

Local 

0.3315 0.7578 0.3140 0.3756 0.7101 0.8436 

* A p value of <0.05 indicates a statistically significant difference. 4 

 5 

6 
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Table 6. Performances of different classifiers for the classification of lower-grade 1 

gliomas (LGGs) and glioblastomas (GBMs) 2 

 Accuracy Sensitivity Specificity PPV NPV Az 

Logistic 

Regression 

88% (94/107) 82% (28/34) 90% (66/73) 80%(28/35) 92%(66/72) 0.89 

ANN 84% (90/107) 79% (27/34) 86% (63/73) 73% (27/37) 90% (63/70) 0.83 

p-value 0.4309 0.7578 0.4389 0.4829 0.7306 0.2036 

 3 

 4 


