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Abstract 

Purpose: Bronchoscopy is useful in lung cancer detection, but cannot be used to 

differentiate cancer types. A computer-aided diagnosis (CAD) system was proposed to 

distinguish malignant cancer types to achieve objective diagnoses. 

Methods: Bronchoscopic images of 12 adenocarcinoma and 10 squamous cell 5 

carcinoma patients were collected. The images were transformed from a red-blue-green 

(RGB) to a hue-saturation-value (HSV) color space to obtain more-meaningful color 

textures. By combining significant textural features (p<0.05) in a machine learning 

classifier, a prediction model of malignant types was established. 

Results: The performance of the CAD system achieved an accuracy of 86% (19/22), a 10 

sensitivity of 90% (9/10), a specificity of 83% (10/12), a positive predictive value of 

82% (9/11), and a negative predictive value of 91% (10/11) in distinguishing lung 

cancer types. The area under the receiver operating characteristic curve was 0.82. 

Conclusions: On the basis of extracted HSV textures of bronchoscopic images, the 

CAD system can provide recommendations for clinical diagnoses of lung cancer types. 15 
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Introduction 

Despite the development of new medications and surgical therapies, lung cancer 20 

is by far the most common cancer and the leading cause of cancer deaths worldwide 1,2. 

Non-small-cell lung cancer (NSCLC) occurs in nearly 85% of lung cancer patients 3-5, 

and 80% of NSCLCs are adenocarcinomas (ACs) and squamous cell carcinomas 

(SCCs). In clinical settings, advanced stages of adenocarcinoma (AC) and squamous 

cell carcinoma (SCC) require different treatment choices. In Asian countries, patients 25 

with advanced lung ACs comprise higher proportions, up to 50% compared to 

10%~15% in Western countries, and such cases are related to mutations of the 

epidermal growth factor receptor (EGFR) and show a good response to EGFR-tyrosine 

kinase inhibitors (EGFR-TKIs); but the same is not true for SCCs 6,7. For advanced 

SCCs, cytotoxic chemotherapy and/or radiotherapy have been standard treatments in 30 

the past decade. But recently developed immune checkpoint blockade therapy has 

become a new standard treatment for advanced SCC with high expression of 

programmed death ligand 1 (PD-L1) 8. Because of the diversity of treatment choices 

when determining the best treatment for lung cancer patients, confirmation of the 

correct histologic type is the first step, followed by a molecular diagnosis panel of the 35 

lung cancer. Clinically, using an immunohistochemical (IHC) panel to confirm the 
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correct histological type is the most frequently employed  method, but it takes a couple 

of days to get results. 

In lung cancer patients with endobronchial lesions, a bronchoscopic biopsy is a 

rapid and safe way for tumor tissue acquisition, and with adequate tumor tissues, a 40 

correct pathologic diagnosis can be made. During the initial diagnosis period, a white-

light bronchoscopic image might help make a diagnosis of the histologic type and 

facilitate subsequent cancer staging and treatment. However, one limitation of 

bronchoscopic examinations is the variance among different observers 9. Usually a 

pathologic diagnosis and final molecular diagnosis may take up to 2 weeks. However, 45 

some patients have more-severe symptomatic disease and require immediate treatment. 

If computer-aided diagnosis (CAD) can provide adequate accuracy through 

bronchoscopic images before the pathologic diagnosis, it could help clinical physicians 

make decisions for prompt and adequate treatment of severely symptomatic patients. 

With the development of image processing and machine learning, CAD systems 50 

are regarded as a practical way to establish objective diagnostic suggestions. By 

extracting quantitative image features and combining them with machine learning, each 

case is given a likelihood of being different types 10,11. In the previous literature, a CAD 

system was only developed to classify normal mucosa and lung tumors using white-

light bronchoscopy 12. A diagnostic accuracy of 80% was achieved. Based on the 55 
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success of that CAD, this study first explored predictions of different lung cancer 

subtypes using bronchoscopy. 

The previous literature mentioned that color of a tissue is important information 

for making medical diagnoses, such as when analyzing skin erythema and skin 

segmentation, and evaluating a wound's status 13,14. The success of pattern recognition 60 

highly depends on how to interpret the color information of bronchoscopy and 

distinguish different normal tissues from lung cancers. Similar to human perception and 

color describing, the hue-saturation-value (HSV) color space intuitively translates 

colors using hue, saturation, and brightness and has been successfully used in medical 

applications 13,14. 65 

In this study, quantitative texture features were extracted from HSV color channels 

to distinguish differences between ACs and SCCs. Under a situation with various 

lighting changes in bronchoscopy, separating color components from intensities would 

make feature extraction more robust 15. Using a machine learning classifier, the 

interpreted diagnostic information was transformed into probabilities to evaluate the 70 

types of observed lung cancers. Development of such a CAD system can provide more-

objective recommendations for recognizing lung cancer types using bronchoscopy and 

facilitate clinical physician decision-making in some circumstances. 
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Materials and Methods 75 

Patient information 

The institutional review board of the hospital approved this study. Informed 

consent was waived because we used retrospective data. From September 2015 to April 

2017, 70 patients at Shuang Ho Hospital were examined using bronchoscopy (BF-F260, 

Olympus Optical, Tokyo, Japan). Of the 70 cases, 34 patients were found to have 80 

positive findings of neoplastic changes, while the other 36 patients had normal mucosal 

changes. The final pathologic diagnosis of 34 patients was made by a pathologist and 

confirmed by a lung cancer tumor board as having neoplastic lesions, and these data 

were collected as a diagnostic reference. Bleeding and blood clots caused by the 

bronchoscopic procedure can affect the interpretation. Thus, among the 34 patients, 85 

bronchoscopic images of 22 cases of lung cancers without bleeding were enrolled. 

Other neoplastic lesions of limited size, including two SCCs, two unknown carcinomas, 

and one tracheal tumor, were excluded. In total, 12 AC patients (aged 42~83 years) and 

10 SCC patients (aged 50~90 years) were enrolled. Examples of endobronchial AC and 

SCC tumors are demonstrated in Fig. 1. 90 
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(a)          (b) 

 

(c) 

Fig. 1. Examples of (a) an adenocarcinoma and (b and c) two squamous cell carcinomas 95 

shown on bronchoscopic images with the black arrows pointing at tumor edges. 

 

Multi-channel features 

 Conventional CAD systems, such as computed tomography, ultrasound, and 

magnetic resonance imaging, quantify gray-scale features in medical images for 100 
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diagnoses 16,17. These CAD systems extract brightness variations of lesion tissues and 

compare brightness levels between lesions and background tissues to classify benign 

and malignant tumors with substantial accuracy. In this study, lung cancer tissues 

presenting a color appearance in bronchoscopy were analyzed. Multi-channel features 

were extracted from three color channels for tissue characterization. First, 105 

endobronchoscopic images were converted from the unintuitive red-green-blue (RGB) 

to the hue (H)-saturation (S)-value (V) (HSV) color space, which is better for 

interpreting color properties. Then, the textures in the H, S, and V channels were 

individually extracted to establish a diagnostic model. 

HSV transformation 110 

Using bronchoscopy to detect lung cancers depends on the color appearance of 

tissues. Diagnostic results are dramatically related to the color space used for 

interpreting color information. In this experiment, the inherent RGB color space was 

transformed into an HSV composition18. HSV is one of the successful color spaces 

proposed to imitate human perception. The hue of tissues can present an abnormal 115 

appearance which can be recognized by physicians to distinguish them from other 

normal tissues; saturation may indicate the level of abnormalities from normal tissues; 

and value indicates the property of luminance. The color space of HSV channels is 

shown as Fig. 2. Figure 3 shows the transformed HSV images from Fig. 1. 
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 120 

Fig. 2. HSV is a color space containing three channels: hue (H), saturation (S), and 

value (V). 

 

(a) 

 125 

(b) 

 

(c) 
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Fig. 3. Transformed hue(left)-saturation(middle)-value(right) (HSV) images of Fig. 1. 

(a) HSV of Fig. 1a; (b) HSV of Fig. 1b; (c) HSV of Fig. 1c with the red arrows 130 

pointing at tumor edges. 

 

Textural features 

Textural features are widely extracted from medical images for pattern 

recognition 16,17. Generally, texture information is analyzed using gray-scale values. By 135 

combining multiple texture statistics, benign and malignant tumors can be recognized 

by a classifier. Given the success of previous studies 16,17, this study used HSV color 

channels to extract textural features to classify malignant types. After delineating tumor 

contours by bronchoscopy, tissues inside the delineated area were characterized. 

Color textures of tumors in endobronchoscopic images were interpreted by 140 

analyzing correlations between pixel values. In each of the H, S, and V channels, a 

gray-level co-occurrence matrix (GLCM) 19 as second-order statistics described the 

joint frequencies of pair-wise combinations. After scanning a pixel and its adjacent 

pixels, co-occurrence matrices P=[p(i,j|d,θ)] were formed to show the frequencies of 

two eight-connected adjacent pixels at a distance, d, and direction, θ, with respective 145 

pixel values of i and j. The parameters of d=1 and four offset directions, θ=0°, 45°, 90°, 

and 135°, were used in the experiment (Fig. 4). These four directions were combined 
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into a single matrix to achieve rotation invariance. The derived statistics listed below 

describe the 14 GLCM textural features: autocorrelation, contrast, correlation, cluster 

prominence, cluster shading, dissimilarity, energy, entropy, homogeneity, difference 150 

variance, difference entropy, information measure of correlation, inverse difference 

normalized, and inverse difference moment. Upon the statistical measurement of 

GLCM, local intensity variations that form the specified pattern of certain tissues can 

be quantified. Local appearances, including smoothness, regularity, and homogeneity, 

need to be interpreted in medical image examinations to differentiate various tissues. 155 

 

 

Fig. 4. Spatial correlations between a pixel and its neighboring pixels were analyzed in 

four directions of 0°, 45°, 90°, and 135° with distance=1. 

 160 

Statistical analysis 
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Textural features extracted from multiple channels were evaluated if they were 

statistically significant in distinguishing lung cancer types. The Kolmogorov-Smirnov 

test20 was used to determine if textural features were normally distributed. According 

to test results, Student’s t-test20 and the Mann-Whitney U-test20 were respectively used 165 

to test normally and non-normally distributed features. For features with a p value of 

<0.05, there was a statistically significant difference between malignant types. In 

constructing the prediction model, textural features were grouped in a logistic 

regression classifier. 

Logistic regressions are especially appropriate for establishing models involving 170 

disease states such as malignancy estimation and type classification and therefore are 

widely used in the health sciences. A logistic regression model generates a predicted 

value of the outcome variable as a sum of products with coefficients trained from 

statistical data. A regression model is helpful in answering questions about domain 

areas such as medicine, because the coefficient of each predictor variable explicitly 175 

expresses the relative contribution of that variable to the outcome variable. 

Based on backward elimination 21, one feature with a minimum predictive residual 

error sum of squares was eliminated each time. In the end, the most relevant subset 

features with the lowest error rate were combined for a tumor diagnosis. Then, a leave-

one-out cross-validation method 22 was used to validate the diagnostic performance. If 180 



 

12 

 

K cases were collected in the experiment, the training and testing executed K iterations. 

In each iteration, one case was selected from the dataset and removed in order to test 

the result trained by the remaining K-1 cases. Using the biopsy-proven pathology as the 

gold standard, tumors were assigned a probability value as the likelihood of being AC 

or SCC in the binary logistic regression 23. Probabilities regarded as prediction results 185 

were determined according to the quantitative image features of tumors. 
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In the equation, various diagnostic features:  nxxx ,,, 21   were combined using their 

coefficients ci and the constant c0. After classification, five performance indices 

including the accuracy, sensitivity, specificity, positive predictive value (PPV), and 190 

negative predictive value (NPV) were calculated for evaluation. A receiver operating 

characteristic (ROC) curve was used to show tradeoffs between the sensitivity and 

specificity. The resulting area under the ROC curve, AUC, was calculated using 

ROCKIT software (C. Metz, University of Chicago, Chicago, IL, USA). The logistic 

regression and significance testing were carried out using SPSS software (vers. 16 for 195 

Windows; SPSS, Chicago, IL, USA). 

 

Results 
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After transforming the original image composition from RGB to HSV, 14 GLCM 

textural features were extracted from individual channels. Then, 42 textural features in 200 

total were evaluated as to whether they could distinguish malignant types. As a result, 

the correlation, cluster prominence, cluster shading, and difference variance in the S 

channel and cluster prominence and cluster shading in the V channel had significant p 

values of <0.05 as shown in Table 1. After backward elimination used in the logistic 

regression, the most relevant features, including correlation (S), difference variance (S), 205 

and cluster shading (V), were combined to achieve an accuracy of 86% (19/22), a 

sensitivity of 90% (9/10), a specificity of 83% (10/12), a PPV of 82% (9/11), and an 

NPV of 91% (10/11). The AUC was 0.82. Among 10 SCC cases, only one was 

misclassified with a probability of 2% (cases having probabilities of >50% were 

regarded as being an SCC). Misclassified examples are illustrated in Fig. 5a 210 

(misclassified SCC) and 5b, which is the corresponding delineated tumor area of Fig. 

5a. 

 

Table 1. Significant textural features in the hue-saturation-value (HSV) color space 

and corresponding p values evaluated using Student’s t-test 215 

Feature AC SCC p value 

Mean±SD Mean±SD 

Correlation (S) 0.987±0.004 0.979±0.004 <0.001* 
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Cluster prominence (S) 1589.937±818.998 738.032±433.412 <0.01* 

Cluster shading (S) 130.865±66.141 64.554±36.635 <0.01* 

Difference variance (S) 20.257±9.692 12.559±6.827 <0.05* 

Cluster prominence (V) 298.707±206.022 143.151±80.896 <0.05* 

Cluster shade (V) -32.370±20.906 -16.407±8.691 <0.05* 

* A p value of <0.05 indicates a statistically significant difference. 

AC, adenocarcinoma; SCC, squamous cell carcinoma; S, saturation; V, value; SD, 

standard deviation. 

 

  220 

(a)      (b) 

Fig. 5. A misclassified squamous cell carcinoma (SCC). (a) The appearance of 

an SCC shown in bronchoscopy and (b) the corresponding delineated tumor area. 

 

Discussion 225 

Bronchoscopy is a widely used imaging examination to detect and take biopsies 

of endobronchial lesions of lung cancer. The limitation is that physicians cannot classify 
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carcinomas solely according to bronchoscopic images. This study presents a rapid and 

accurate assessment of malignant types via a quantitative textural analysis using 

bronchoscopic images. Based on color textures in the HSV color space, the proposed 230 

CAD system can generate more-objective diagnoses with less inter-observer variability. 

With respect to the diagnostic accuracy, the CAD system achieved an accuracy of 86% 

(19/22), a sensitivity of 90% (9/10), a specificity of 83% (10/12), a PPV of 82% (9/11), 

and an NPV of 91% (10/11). With the help of this CAD system, clinical physicians 

could have rapid and more-reliable results before a final pathologic diagnosis is 235 

available, and this could facilitate decision making by physicians for more-severe and 

urgent lung cancer patients. 

As to the few previously published articles, one CAD system obtained an 80% 

accuracy in classifying normal mucosa and tumors using white-light bronchoscopy 12. 

The difference between that study and ours is that our study extracted textural features 240 

from HSV, a more-perceptual color space and achieved a higher accuracy (86% vs. 

80%). In observations from the experiment results, significant textural features in 

distinguishing AC and SCC were correlation, cluster prominence, cluster shading, and 

difference variance from the saturation channel, and cluster prominence and cluster 

shading from the value channel (Table 1). Hue features did not achieve significance, 245 

which revealed that the primary colors of both malignant types were similar. Under 
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such a situation, the saturation channel had the most significant features and thus was 

selected for the prediction model. The saturation may indicate the level of abnormalities 

from normal tissues. Complementary to cluster shading in the value channel, tissue 

brightness was also considered. This performance suggests that using a texture analysis 250 

of bronchoscopic images can provide more diagnostic information between image 

pixels which might not be easily observed by human beings. Differentiating different 

lung cancer types via a bronchoscopic CAD is a promising method. With respect to 

diagnostic results, the misclassified SCC in Fig. 5 had a heterogeneous tissue 

composition. According to the significant features (difference variance), SCCs tend to 255 

have lower values than ACs, which may cause SCC cases to be misclassified. The 

underlying biological structure related to the heterogeneous patterns between ACs and 

SCCs should be evaluated in future studies. 

A previous study used radiomic CT features to classify tumor histologic subtypes 

24. In that study, 440 features were extracted from gray-scale CT volumes which 260 

differed from our color features. The number of features and volumes may require 

substantial computation time compared to our 42 features from bronchoscopic images. 

For clinical use, using bronchoscopy or CT depends on the status of patients and 

available physicians and equipment. In a situation requiring a rapid diagnosis, time is 
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critical for physicians. Since both CAD systems were well-established, exploring the 265 

accuracy of combining them would be a potential future study. 

There are several limitations in this study. First, this was a retrospective study, and 

there might have been some selection bias during the process. Second, the case number 

was small in this study. Nevertheless, this is a preliminary experiment regarding the use 

of quantitative image features and machine learning techniques to classify different 270 

lung cancer subtypes via bronchoscopic images. In the future, a larger prospective study 

comparing physicians and the CAD system should be conducted 25. More cases should 

be added in future studies to enhance the generalization of the proposed method. 

Simultaneously, correlations between image findings and pathology findings can also 

be explored. Another challenging but very practical task is automatic tumor detection. 275 

After more-quantitative features are implemented later, the CAD system can be 

equipped with both lung cancer detection and diagnostic features. Then, whether the 

CAD system can improve physicians’ performance is also a relevant topic for clinical 

use. 

 280 

Conclusions 
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 In this study, we demonstrate that a CAD system can help distinguish lung 

cancer subtypes using bronchoscopic images. The CAD system can provide rapid and 

precise results for clinical physicians before the final pathologic results are available, 

and provide a greater time window for physicians to make decisions for more-severe 285 

and urgent lung cancer patients. This will certainly improve the quality of care, and 

result in better patient care. 
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