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Abstract

In this thesis, we establish the maximum principles for the elliptic dynamic

operators and parabolic dynamic operators on multi-dimensional time scales,

and apply it to obtain some applications. Indeed, we extend the maximum

principles on differential equations and difference equations to the so-called

dynamic equations.
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中中中文文文摘摘摘要要要

在這篇論文裡，我們要討論的是在多維度的時間刻度(time scale)下橢圓型動態算

子和拋物型動態算子的極大值定理，並藉此得到一些應用。 事實上，我們是將微

分方程及差分方程裡的極大值定理推廣至所謂的動態方程中。
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1 Introduction

Maximum principles are an important tool in the study of partial differ-

ential and difference equations. For example, they can be used to obtain the

existence and uniqueness of solutions and to approximate it. Consequently the

theory of maximum principles in difference and differential equations has been

investigated extensively, see for example [1] and [2] and the references cited

therein.

In recent years, the study of dynamic equations on time scales has received

a lot of attentions since it not only can unify the calculation of difference

and differential equations but also has various applications. In particular, the

maximum principles have been established in [4] for the second order ordinary

dynamic operator and [5] for the elliptic dynamic operator. Motivated by the

above work, in this thesis, we study the maximum principles for the elliptic

dynamic operator

L[u] :=
n∑
i=1

(u∇i∆i +Biu
∆i + Ciu

∇i)

and the parabolic dynamic operator

L[u] :=
n∑
i=1

(u∇i∆i + B̃iu
∆i + C̃iu

∇i)− u∇n+1 .

Our results improve the results in [5].

This thesis is organized as follows. Section 2 contains some basic defini-

tions and the necessary results about time scales. In Section 3, we present

the maximum principles for the elliptic dynamic operators. Finally, in Section

4, we establish the maximum principles for the parabolic dynamic operators,

and apply it to obtain some useful applications.

1
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2 Preliminary

For completeness, we state some fundamental definitions and results con-

cerning partial dynamic equations on time scales that we will use in the sequel.

It can be regarded as a generalization of the one-dimensional case. More details

can be found in [6], [7], [8], and [9].

A time scale is an arbitrary nonempty closed subset of R. Throughout this

thesis, we denote I = {1, 2, · · · , n}, where n ∈ N, and we assume that Ti, for

each i ∈ I, is a time scale and the set

Λ = T1 × T2 × · · · × Tn = {t = (t1, t2, · · · , tn) | ti ∈ Ti for each i ∈ I},

defined by the Cartesian product is an n-dimensional time scale.

Definition 2.1 For each i ∈ I, the mappings σi, ρi : Ti → Ti defined by

σi(u) :=


inf{v ∈ Ti | v > u}, if u 6= maxTi,

maxTi, if u = maxTi,

and

ρi(u) :=


sup{v ∈ Ti | v < u}, if u 6= minTi,

minTi, if u = minTi,

are called the ith forward and backward jump operators respectively. In this

definition, the corresponding graininess functions µi, νi : Ti → [0,∞) are

defined by

µi(u) := σi(u)− u, νi(u) := u− ρi(u).

For convenience, we define the functions σ̂i, ρ̂i : Λ→ Λ by

σ̂i(t) = (t1, t2, · · · , ti−1, σi(ti), ti+1, · · · , tn),

2
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and

ρ̂i(t) = (t1, t2, · · · , ti−1, ρi(ti), ti+1, · · · , tn),

for any t ∈ Λ and i ∈ I. In addition, if u : Λ → R is a function, then the

functions uσ̂i , uρ̂i : Λ→ R are defined by

uσ̂i(t) = u(σ̂i(t)) and uρ̂i(t) = u(ρ̂i(t)),

for any t ∈ Λ and i ∈ I.

Definition 2.2 A point t in Λ is said to be i-right dense if ti < maxTi and

σi(ti) = ti, and i-left dense if ti > minTi and ρi(ti) = ti. Also, if σi(ti) > ti

then t is called i-right scattered, and if ρi(ti) < ti then t is called i-left scattered.

Moreover, we say that t is i-scattered if it is both i-left scattered and i-right

scattered, and i-dense if it is both i-left dense and i-right dense.

Definition 2.3 For each i ∈ I, let

(Ti)K =


Ti\maxTi, if Ti has a left scattered maximum,

Ti, if Ti has a left dense maximum.

Then we can define

ΛK = (T1)K × (T2)K × · · · × (Tn)K.

Assume u : Λ → R is a function and let t ∈ ΛK. Then we define u∆i(t) to be

the number (provided it exists) with the property that given any ε > 0, there

exists a δ > 0 such that

| [u(σ̂i(t))−u(t1, t2, · · · , ti−1, s, ti+1, · · · , tn)]−u∆i(t)[σi(ti)−s] |≤ ε | σi(ti)−s |,

for all s ∈ (ti − δ, ti + δ) ∩ Ti. In this case, we call u∆i(t) the partial delta

derivative of u at t with respect to ti.

In particular, if we choose n = 1 in this definition, then u is a single

variable function from T1 into R, and we denote the delta derivative of u at

3
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t ∈ (T1)K by u∆(t). Moreover, we say that u is delta differentiable at t if u∆(t)

exists for some t ∈ (T1)K.

Definition 2.4 For each i ∈ I, let

(Ti)K =


Ti\minTi, if Ti has a right scattered minimum,

Ti, if Ti has a right dense minimum.

Then we can define

ΛK = (T1)K × (T2)K × · · · × (Tn)K.

Assume u : Λ → R is a function and let t ∈ ΛK. Then we define u∇i(t) to be

the number (provided it exists) with the property that given any ε > 0, there

exists a δ > 0 such that

| [u(ρ̂i(t))−u(t1, t2, · · · , ti−1, s, ti+1, · · · , tn)]−u∇i(t)[ρi(ti)−s] |≤ ε | ρi(ti)−s |,

for all s ∈ (ti − δ, ti + δ) ∩ Ti. In this case, we call u∇i(t) the partial nabla

derivative of u at t with respect to ti.

In particular, if we choose n = 1 in this definition, then u is a single

variable function from T1 into R, and we denote the nabla derivative of u at

t ∈ (T1)K by u∇(t). Moreover, we say that u is nabla differentiable at t if u∇(t)

exists for some t ∈ (T1)K.

For convenience, we denote the intersection of ΛK and ΛK by ΛKK, i.e.,

ΛKK = (T1)KK × (T2)KK × · · · × (Tn)KK.

Definition 2.5 Let T be an arbitrary time scale. A function f : T → R is

called rd-continuous provided it is continuous at right-dense points in T and

its left-sided limits exist (finite) at left-dense points in T.

Definition 2.6 A function F : T → R is called a delta antiderivative of

4
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f : T→ R provided

F∆(t) = f(t) holds for all t ∈ TK.

We then define the integral of f by

∫ t

s
f(τ)∆τ = F (t)− F (s) for all s, t ∈ T.

Lemma 2.7 Every rd-continuous function has a delta antiderivative.

Definition 2.8 A function f : T → R is called ld-continuous provided it is

continuous at left-dense points in T and its right-sided limits exist (finite) at

right-dense points in T.

Definition 2.9 A function F : T → R is called a nabla antiderivative of

f : T→ R provided

F∇(t) = f(t) holds for all t ∈ TK.

We then define the integral of f by

∫ t

s
f(τ)∇τ = F (t)− F (s) for all s, t ∈ T.

Lemma 2.10 Every ld-continuous function has a nabla antiderivative.

Definition 2.11 Let T be an arbitrary time scale, and p : T→ R be a function

and satisfy

1− ν(t)p(t) 6= 0 for all t ∈ TK.

Then we define the nabla exponential function by

êp(t, s) = exp(
∫ t

s
g(τ)∇τ) for s, t ∈ T,

where

g(τ) =


p(τ), if ν(τ) = 0,

− 1

ν(τ)
Log(1− ν(τ)p(τ)), if ν(τ) 6= 0.

5
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Lemma 2.12 Suppose that α is a negative constant and s, t, u ∈ T, then

(a) êα(t, s) > 0 and êα(t, t) ≡ 1;

(b) êα(t, u)êα(u, s) = êα(t, s);

(c) ê∇α (t, s) = αêα(t, s).

Lemma 2.13 Assume that f : T → R is a single variable function and let

t ∈ TKK, then we have the following:

(a) If f is delta or nabla differentiable at t, then f is continuous at t.

(b) If f is continuous at a right-scattered point t, then f is delta differentiable

at t with

f∆(t) =
f(σ(t))− f(t)

µ(t)
.

(c) If t is right-dense, then f is delta differentiable at t if and only if the limit

lim
s→t

f(t)− f(s)

t− s

exists. In this case,

f∆(t) = lim
s→t

f(t)− f(s)

t− s
.

(d) If f is delta differentiable at t, then

f(σ(t)) = f(t) + µ(t)f∆(t).

(e) If f is continuous at a left-scattered point t, then f is nabla differentiable

at t with

f∇(t) =
f(t)− f(ρ(t))

ν(t)
.

(f) If t is left-dense, then f is nabla differentiable at t if and only if the limit

lim
s→t

f(t)− f(s)

t− s

exists. In this case,

f∇(t) = lim
s→t

f(t)− f(s)

t− s
.

(g) If f is nabla differentiable at t, then

f(ρ(t)) = f(t)− ν(t)f∇(t).

6
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Hereafter [a, b]T represents an interval on time scale T, that is, [a, b]T =

[a, b] ∩ T. Other types of intervals on a time scale can be represented by the

similar way.

Lemma 2.14 Assume that f : T→ R is a function, then

(a) If f∆ > 0 on [a, b]T, then f is strictly increasing on [a, b]T.

(b) If f > 0 is a continuous function on [a, b]T, then
∫ b

a
f(t)∆t > 0 and∫ b

a
f(t)∇t > 0, where a, b ∈ T.

Lemma 2.15 Assume that f : T → R is nabla differentiable and f∇ is con-

tinuous on TK. Then f is delta differentiable at t and

f∆(t) = f∇(σ(t)) for all t ∈ TK.

7
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3 Maximum principles for the elliptic dynamic operators

In this section, we first consider the dynamic Laplace operator

∆Tu :=
n∑
i=1

u∇i∆i .

Let

Λ = [ρ1(a1), σ1(b1)]T1 × · · · × [ρn(an), σn(bn)]Tn .

We shall study the functions in the set

D(Λ) := {u : Λ→ R | u∇i∆i is continuous in ΛKK for each i ∈ I}.

The following lemma provides some basic properties for an interior maxi-

mum point of a function in D(Λ).

Lemma 3.1 Suppose that u ∈ D(Λ) attains its maximum at an interior point

m of Λ. Then, for each i ∈ I, we have

u∇i(m) ≥ 0, u∆i(m) ≤ 0, and u∇i∆i(m) ≤ 0.

In particular, if m is i-right dense, then

u∇i(m) = u∆i(m) = 0.

Proof. Since u attains its maximum at an interior point m of Λ, it follows from

the definition of u∇i and u∆i that

u∇i(m) ≥ 0 and u∆i(m) ≤ 0, (1)

for each i ∈ I. Let us divide our proof into two cases according to the point

type of m with respect to the ith component.

(i) m is i-right dense:

In this case, by applying Lemma 2.15, we have that

u∆i(m) = u∇i(σ̂i(m)) = u∇i(m),

8
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and consequently, together with (1), we conclude that

u∇i(m) = u∆i(m) = 0.

Now we want to show that u∇i∆i(m) ≤ 0. For contradiction, we assume

that u∇i∆i(m) > 0. Then the continuity of u∇i∆i and Lemma 2.14 imply

that there exists a δ > 0 such that u∇i is strictly increasing in ti on J ,

where J denotes the set of all points t ∈ Λ lying on the line segment

joining m and m + δei, where {ei | i ∈ I} denotes the natural basis for

Rn. Since m is i-right dense, without loss of generality, we may assume

that mi + δ ∈ Ti. Since u∇i(m) = 0, it follows that u∇i(t) > 0 for all

t ∈ J \ {m}. Then, by applying Lemma 2.14, we easily get

∫ mi+δ

mi

u∇i(m1,m2, · · · ,mi−1, s,mi+1, · · · ,mn)∇s = u(m+δei)−u(m) > 0,

which contradicts the fact that u(m) is the maximum value on Λ.

(ii) m is i-right scattered:

Note that

u∇i(σ̂i(m)) =
u(σ̂i(m))− u(ρ̂i(σ̂i(m)))

σi(mi)− ρi(σi(mi))
=
u(σ̂i(m))− u(m)

σi(mi)−mi

= u∆i(m).

Together with (1), we obtain

u∇i∆i(m) =
u∇i(σ̂i(m))− u∇i(m)

σi(mi)−mi

=
u∆i(m)− u∇i(m)

σi(mi)−mi

≤ 0.

2

Theorem 3.2 If u ∈ D(Λ) satisfies

∆Tu > 0, in ΛKK, (2)

then u cannot attain its maximum at an interior point of Λ.

Proof. For contradiction, we assume that u attains its maximum at an interior

point m of Λ. By applying Lemma 3.1, we have that u∇i∆i(m) ≤ 0 for each

9
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i ∈ I. This implies that

∆Tu(m) =
n∑
i=1

u∇i∆i(m) ≤ 0,

which contradicts (2). 2

Next we consider the more general operator which contains the first-

derivative terms

L[u] :=
n∑
i=1

(u∇i∆i +Biu
∆i + Ciu

∇i) = ∆Tu+
n∑
i=1

(Biu
∆i + Ciu

∇i).

Following the statement of Lemma 3.1, for each t ∈ Λ, we define the

auxiliary index sets

I tRD := {i ∈ I : ti = σi(ti)},

I tRS := {i ∈ I : ti < σi(ti)}.

Theorem 3.3 If u ∈ D(Λ) satisfies

L[u] > 0, in ΛKK, (3)

and let Bi and Ci satisfy 
Bi(t) ≥ 0,

Ci(t) ≤ 0,

(4)

for each t ∈ ΛKK which is i-right scattered and i ∈ I. Then u cannot attain its

maximum at an interior point of Λ.

Proof. For contradiction, we assume that u attains its maximum at an interior

point m of Λ. Lemma 3.1 yields that at the point m, we have

u∆i(m) = 0, u∇i(m) = 0, and u∇i∆i(m) ≤ 0 if i ∈ ImRD,

u∆i(m) ≤ 0, u∇i(m) ≥ 0, and u∇i∆i(m) ≤ 0 if i ∈ ImRS.

Therefore, together with the assumption (4), we have that

10
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L[u](m)

=
n∑
i=1

(u∇i∆i(m) +Bi(m)u∆i(m) + Ci(m)u∇i(m))

=
∑
i∈ImRD

u∇i∆i(m) +
∑
i∈ImRS

(u∇i∆i(m) +Bi(m)u∆i(m) + Ci(m)u∇i(m))

≤ 0,

which contradicts (3). 2

Theorem 3.4 Let u ∈ D(Λ) satisfy the inequality (3) and let Bi and Ci

satisfy 
1 +Bi(t)µi(ti) ≥ 0,

−1 + Ci(t)µi(ti) ≤ 0,

(5)

for each t ∈ ΛKK which is i-right scattered and i ∈ I. Then u cannot attain its

maximum at an interior point of Λ.

Proof. For contradiction, we assume that u attains its maximum at an interior

point m of Λ. Then, by applying Lemma 3.1, we can rewrite L[u](m) in the

following way:

L[u](m)

=
n∑
i=1

(u∇i∆i(m) +Bi(m)u∆i(m) + Ci(m)u∇i(m))

=
∑
i∈ImRD

u∇i∆i(m) +
∑
i∈ImRS

(u∇i∆i(m) +Bi(m)u∆i(m) + Ci(m)u∇i(m))

=
∑
i∈ImRD

u∇i∆i(m) +
∑
i∈ImRS

(
u∆i(m)− u∇i(m)

µi(mi)
+Bi(m)u∆i(m) + Ci(m)u∇i(m)).

(6)

If I = ImRD, then (6) implies that

L[u](m) =
∑
i∈ImRD

u∇i∆i(m) ≤ 0,

11
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which contradicts (3). Otherwise, let us define the auxiliary functions

µ̂(t) :=
∏

j∈ItRS

µj(tj), µ̂−i(t) :=
∏

j∈It
RS

j 6=i

µj(tj).

Obviously, if i ∈ I tRS we have

µ̂(t) = µ̂−i(t)µi(ti). (7)

We multiply both sides of the equality (6) by µ̂(m) > 0 and use (7) to obtain

µ̂(m)L[u](m)

= µ̂(m)
∑
i∈ImRD

u∇i∆i(m)

+µ̂−i(m)µi(mi)
∑
i∈ImRS

(
u∆i(m)− u∇i(m)

µi(mi)
+Bi(m)u∆i(m) + Ci(m)u∇i(m))

= µ̂(m)
∑
i∈ImRD

u∇i∆i(m)

+µ̂−i(m)
∑
i∈ImRS

[(1 +Bi(m)µi(mi))u
∆i(m) + (−1 + Ci(m)µi(mi))u

∇i(m)].

Lemma 3.1 together with the assumptions (5), and positivity of µ̂(m) and

µ̂−i(m) imply that

µ̂(m)L[u](m) ≤ 0,

which contradicts (3). Therefore we conclude that u cannot achieve its maxi-

mum at an interior point of Λ. 2

12
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4 Maximum principles for the parabolic dynamic operators

In this section, we extend our results in the last section to the parabolic

dynamic operators. Let Λ be an n-dimensional time scale defined in Section

3. Then we define the (n+ 1)-dimensional time scale Ω by

Ω = Λ× [0, T ]Tn+1 ,

where Tn+1 is an arbitrary time scale and 0, T ∈ Tn+1. In addition, we set

B = Λ× {0} and S = ∂Λ× (0, T ]Tn+1 ,

then we can define the parabolic boundary PΩ by

PΩ = S ∪B.

Throughout this section, we study the functions in the set

D(Ω) := {u : Ω→ R | u∇i∆i is continuous in ΛKK × [0, T ]Tn+1 for each i ∈ I

and u∇n+1 is continuous in Λ× ([0, T ]Tn+1)K}.

Theorem 4.1 If u ∈ D(Ω) satisfies

∆Tu− u∇n+1 =
n∑
i=1

u∇i∆i − u∇n+1 > 0, in ΛKK × ([0, T ]Tn+1)K, (8)

Then u cannot attain its maximum anywhere other than on the parabolic

boundary.

Proof. For contradiction, we assume that u attains its maximum at a point

m ∈ Ω\PΩ. This implies that m ∈ ΛKK× ([0, T ]Tn+1)K. Therefore, by applying

Lemma 3.1, we have

u∇i∆i(m) ≤ 0 for each i ∈ I.

13
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Since u attains its maximum at m, by the definition of partial nabla derivative

of u, we obtain

u∇n+1(m) ≥ 0. (9)

It follows that

(∆Tu− u∇n+1)(m) =
n∑
i=1

u∇i∆i(m)− u∇n+1(m) ≤ 0,

which contradicts (8). 2

Similarly, we consider the more general operator

L[u] :=
n∑
i=1

(u∇i∆i + B̃iu
∆i + C̃iu

∇i)− u∇n+1 .

Theorem 4.2 If u ∈ D(Ω) satisfies

L[u] > 0, in ΛKK × ([0, T ]Tn+1)K, (10)

and let B̃i and C̃i satisfy 
B̃i(t) ≥ 0,

C̃i(t) ≤ 0,

(11)

for each t ∈ ΛKK × ([0, T ]Tn+1)K which is i-right scattered and i ∈ I. Then u

cannot attain its maximum anywhere other than on the parabolic boundary.

Proof. For contradiction, we assume that u attains its maximum at a point

m ∈ Ω \ PΩ. Lemma 3.1 together with the assumptions (11) and (9) imply

that

L[u](m)

=
n∑
i=1

(u∇i∆i(m) + B̃i(m)u∆i(m) + C̃i(m)u∇i(m))− u∇n+1(m)

=
∑
i∈ImRD

u∇i∆i(m) +
∑
i∈ImRS

(u∇i∆i(m) + B̃i(m)u∆i(m) + C̃i(m)u∇i(m))− u∇n+1(m)

≤ 0,
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which contradicts (10). 2

Theorem 4.3 Let u ∈ D(Ω) satisfy the inequality (10) and let B̃i and C̃i

satisfy


1 + B̃i(t)µi(ti) ≥ 0,

−1 + C̃i(t)µi(ti) ≤ 0,

(12)

for each t ∈ ΛKK × ([0, T ]Tn+1)K which is i-right scattered and i ∈ I. Then u

cannot attain its maximum anywhere other than on the parabolic boundary.

Proof. For contradiction, we assume that u attains its maximum at a point

m ∈ Ω \ PΩ. As similar as the proof of Theorem 3.4, we rewrite L[u](m) in

the following way:

L[u](m)

=
∑
i∈ImRD

u∇i∆i(m)

+
∑
i∈ImRS

(
u∆i(m)− u∇i(m)

µi(mi)
+ B̃i(m)u∆i(m) + C̃i(m)u∇i(m))− u∇n+1(m).

(13)

If I = ImRD, then (13) and (9) imply that

L[u](m) =
∑
i∈ImRD

u∇i∆i(m)− u∇n+1(m) ≤ 0,

which contradicts (10). Otherwise, we multiply both sides of the equality (13)

by µ̂(m) > 0 and use (7) and (9) to obtain that

15
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µ̂(m)L[u](m)

= µ̂(m)
∑
i∈ImRD

u∇i∆i(m)

+µ̂−i(m)
∑
i∈ImRS

[(1 + B̃i(m)µi(mi))u
∆i(m) + (−1 + C̃i(m)µi(mi))u

∇i(m)]

−µ̂(m)u∇n+1(m)

≤ 0,

which contradicts (10) and the proof is done. 2

Next we consider the operator which contains the non-derivative term

(L+ h)[u] :=
n∑
i=1

(u∇i∆i + B̃iu
∆i + C̃iu

∇i)− u∇n+1 + hu.

Theorem 4.4 Let u ∈ D(Ω) satisfy

(L+ h)[u] > 0, in ΛKK × ([0, T ]Tn+1)K, (14)

and let B̃i and C̃i satisfy the inequality (12). Moreover, we suppose that

h(t) ≤ 0, (15)

for each t ∈ ΛKK× ([0, T ]Tn+1)K. Then u cannot attain a nonnegative maximum

anywhere other than on the parabolic boundary.

Proof. For contradiction, we assume that u attains a nonnegative maximum

at a point m ∈ Ω \ PΩ. By the proof of Theorem 4.3, we know that

L[u](m) ≤ 0,

if u attains its maximum at the point m. Then, together with the condition

h(m)u(m) ≤ 0, we easily see that

(L+ h)[u](m) = L[u](m) + h(m)u(m) ≤ 0,
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which contradicts (14). 2

Theorem 4.5 If u ∈ D(Ω) satisfies

n∑
i=1

(u∇i∆i + B̃iu
∆i + C̃iu

∇i + βiu
σ̂i + γiu

ρ̂i)− u∇n+1 + hu > 0, (16)

in ΛKK × ([0, T ]Tn+1)K. Further, we assume that
1 + (B̃i(t) + µi(ti)βi(t))µi(ti) ≥ 0,

−1 + (C̃i(t)− νi(ti)γi(t))µi(ti) ≤ 0,

(17)

for each t ∈ ΛKK × ([0, T ]Tn+1)K which is i-right scattered and i ∈ I, and

h+
n∑
i=1

(βi + γi) ≤ 0, in ΛKK × ([0, T ]Tn+1)K. (18)

Then u cannot attain a nonnegative maximum anywhere other than on the

parabolic boundary.

Proof. Using the formulas (d) and (g) in the Lemma 2.13, we can obtain the

two analogues equalities:

u(σ̂i(t)) = u(t) + µi(ti)u
∆i(t),

u(ρ̂i(t)) = u(t)− νi(ti)u∇i(t),

for each t ∈ ΛKK × ([0, T ]Tn+1)K and i ∈ I. Substituting these into (16), we

obtain

n∑
i=1

(u∇i∆i+(B̃i+µi(ti)βi)u
∆i+(C̃i−νi(ti)γi)u∇i)−u∇n+1+(h+

n∑
i=1

(βi+γi))u > 0.

Obviously, this operator has the form of (14), and the assumptions (17) and

(18) ensure that the inequalities (12) and (15) hold. Consequently, we can use

Theorem 4.4 to verify the statement. 2

Finally, we establish the weak maximum principles for the parabolic dy-

namic operators and apply it to obtain the uniqueness of solutions for the
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initial boundary value problem.

Theorem 4.6 Let u ∈ D(Ω) satisfy

L[u] ≥ 0, in ΛKK × ([0, T ]Tn+1)K, (19)

and we assume that B̃i be bounded above and C̃i ≤ 0 satisfy the inequalities

(12). Then u attains its maximum on the parabolic boundary, i.e.,

sup
Ω
u = sup

PΩ
u. (20)

Proof. Since B̃1 is bounded above, there exists a negative constant α such that

α + B̃1 < 0, in ΛKK × ([0, T ]Tn+1)K. (21)

Select any point t̂ ∈ T1. Then, applying Lemma 2.12 and 2.15, we obtain

L[êα(t1, t̂)] = (êα(t1, t̂))
∇1∆1 + B̃1(êα(t1, t̂))

∆1 + C̃1(êα(t1, t̂))
∇1

= (α + B̃1)ê∆1
α (t1, t̂) + αC̃1êα(t1, t̂)

= (α + B̃1)ê∇1
α (σ1(t1), t̂) + αC̃1êα(t1, t̂)

= (α + B̃1)αêα(σ1(t1), t̂) + αC̃1êα(t1, σ1(t1))êα(σ1(t1), t̂)

= αêα(σ1(t1), t̂)[α + B̃1 + C̃1êα(t1, σ1(t1))].

(22)

The assumption C̃1 ≤ 0 together with (21), we see that

L[êα(t1, t̂)] > 0, in ΛKK × ([0, T ]Tn+1)K.

Then for each ε > 0, we have

L[u+ εêα(t1, t̂)] = L[u] + εL[êα(t1, t̂)] > 0, (23)

in ΛKK × ([0, T ]Tn+1)K, so that

sup
Ω

(u+ εêα(t1, t̂)) = sup
PΩ

(u+ εêα(t1, t̂)), (24)
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by applying the Theorem 4.3.

Now we want to show that sup
Ω
u = sup

PΩ
u. For contradiction, we assume that

sup
Ω
u > sup

PΩ
u. Since the time scale T1 is bounded, this implies that 0 <

êα(t1, t̂) < M for some M > 0. We set K = sup
Ω
u − sup

PΩ
u > 0 and take

ε = K
2M

, then by applying (24) we can deduce that

sup
PΩ

(u+ εêα(t1, t̂)) ≤ sup
PΩ

(u+ εM) = sup
PΩ

u+ εM

= (sup
Ω
u−K) +

K

2
< sup

Ω
u

≤ sup
Ω

(u+ εêα(t1, t̂)) = sup
PΩ

(u+ εêα(t1, t̂)),

which is a contradiction and the proof is done. 2

The above proven maximum principles yields the uniqueness of solutions

for the following problem:



n∑
i=1

(u∇i∆i + B̃iu
∆i + C̃iu

∇i)− u∇n+1 = f(t) on ΛKK × ([0, T ]Tn+1)K,

u(t) = g(t) on B,

u(t) = h(t) on S.

(25)

Theorem 4.7 Suppose that the assumptions of Theorem 4.6 hold. If u1 and

u2 are solutions of the initial boundary value problem (25), then u1 ≡ u2.

Proof. First of all, we define the auxiliary function v = u1− u2. Since both u1

and u2 are solutions of (25), this implies that



n∑
i=1

(v∇i∆i + B̃iv
∆i + C̃iv

∇i)− v∇n+1 = 0 on ΛKK × ([0, T ]Tn+1)K,

v(t) = 0 on PΩ

(26)

19



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

Obviously, we know that −v is also a solution of (26). Then by applying

Theorem 4.6, we have that

sup
Ω
v = sup

PΩ
v = 0 and sup

Ω
(−v) = sup

PΩ
(−v) = 0.

It follows that

v(t) ≤ 0 and − v(t) ≤ 0,

for each t ∈ Ω. Consequently, we get the conclusion that v = u1− u2 = 0. 2
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